期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
土壤微生物群落对麻栎-刺槐混交林凋落物分解的影响 被引量:18
1
作者 董学德 高鹏 +4 位作者 李腾 张佳辰 董金伟 许景伟 囤兴建 《生态学报》 CAS CSCD 北大核心 2021年第6期2315-2325,共11页
以麻栎-刺槐混交林和麻栎纯林为研究对象,采用野外定点采样、室内分析与高通量测序的方法,对凋落物分解过程中土壤微生物菌群多样性特征及其对凋落物分解速率的影响进行了研究。结果表明:(1)麻栎-刺槐混交林凋落物的分解速率高于麻栎纯... 以麻栎-刺槐混交林和麻栎纯林为研究对象,采用野外定点采样、室内分析与高通量测序的方法,对凋落物分解过程中土壤微生物菌群多样性特征及其对凋落物分解速率的影响进行了研究。结果表明:(1)麻栎-刺槐混交林凋落物的分解速率高于麻栎纯林。两种林分凋落物有机碳(TOC)、全氮(TN)发生释放,全磷(TP)发生积累-释放的过程。(2)两种林分土壤细菌优势类群为放线菌门(Acidobacteria)、变形菌门(Proteobacteria)、酸杆菌门(Actinobacteria)和疣微菌门(Verrucomicrobia),土壤真菌优势类群为担子菌门(Basidiomycota)、子囊菌门(Ascomycota)和被孢霉门(Moritierellomycota)。(3)凋落物分解过程中,麻栎-刺槐混交林土壤微生物菌群丰富度指数和菌群多样性指数变化范围小于麻栎纯林。(4)凋落物分解速率与土壤细菌菌群丰富度指数和菌群多样性指数呈显著正相关,与土壤真菌菌群丰富度指数呈显著正相关。土壤微生物群落对麻栎-刺槐混交林和麻栎纯林凋落物分解速率具有重要影响,研究结果为深入开展混交林土壤微生物多样性对凋落物分解的影响研究提供理论依据。 展开更多
关键词 混交林 凋落物分解动态 土壤微生 菌群丰富度指数 菌群多样性指数
下载PDF
Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition 被引量:6
2
作者 邓小文 刘颖 韩士杰 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第2期111-116,I0001,I0002,共8页
The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh lit... The effects of nitrogen (N) availability and tree species on the dynamics of carbon and nitrogen at early stage of decomposition of forest litter were studied in a 13-week laboratory incubation experiment. Fresh litter samples including needle litter (Pinus koraiensis) and two types of broadleaf litters (Quercus mongolica and Tilia amurensis) were collected from a broadleaf-korean pine mixed forest in the northern slope of Changbai Mountain (China). Different doses of N (equal to 0, 30 and 50 kg.ha^-1yr^-1, respectively, as NH4NO3) were added to litter during the experiment period. The litter decomposition rate expressed as mass loss and respiration rate increased significantly with increasing N availability. The mass loss and cumulative CO2-C emission were higher in leaf litter compared to that in needle litter. The dis- solved organic Carbon (DOC) concentrations in litter leachate varied widely between the species, but were not greatly affected by N treatments. Regardless of the N addition rate, both N treatments and species had no significant effect on dissolved organic N (DON) concentrations in litter leachate. About 52-78% of added N was retained in the litter. The percentage of N retention was positively correlated (R^2=0.9 1, p〈0.05) with the litter mass loss. This suggested that a forest floor with easily decomposed litter might have higher potential N sink strength than that with more slowly decomposed litter. 展开更多
关键词 carbon and nitrogen dynamics DECOMPOSITION forest litter nitrogen addition
下载PDF
Litterfall,Litter Decomposition,and Nutrient Dynamics in Two Subtropical Bamboo Plantations of China 被引量:11
3
作者 TU Li-Hua HU Hong-Ling +6 位作者 HU Ting-Xing ZHANG Jian LI Xian-Wei LIU Li XIAO Yin-Long CHEN Gang LI Ren-Hong 《Pedosphere》 SCIE CAS CSCD 2014年第1期84-97,共14页
Bamboos are one of the fast-growing and multiple use species in the world, and thus bamboo forests/plantations play an important role in C sequestration at regional and global levels. We studied aboveground litterfall... Bamboos are one of the fast-growing and multiple use species in the world, and thus bamboo forests/plantations play an important role in C sequestration at regional and global levels. We studied aboveground litterfall, litter decomposition and nutrient dynamics for two years in two subtropical bamboo ecosystems in Southwest China so as to test the hypothesis that litter quality determine the rate and nutrient dynamics during decomposition of different litter fractions. Mean annual total aboveground litter production ranged from 494 to 434 g m-2 in two bamboo stands (P stand, dominated by Pleioblastus amarus and H stand, hybrid bamboo dominated by Bambusa pervariabilis x Dendrocalamopsis daii). Bulk (-80%) of litter production was contributed by leaf litter in two stands followed by twigs and sheathes. Different litter fractions represented considerable variations in the rates of mass loss and nutrient release. Variation of the mass remaining after 2 years of decomposition was significantly explained by initial C/N ratio and initial P concentration. Initial concentrations of N, P, Ca, and Mg explained 57.9%, 95.0%, 99.8% and 98.1%, respectively, of the variations of these elements mass remaining after 2 years of decomposition. The patterns of nutrient dynamics and the final amount remaining were mainly determined by their initial litter substrate quality in tl^ese two subtropical bamboo plantations. 展开更多
关键词 C/N ratio litter fraction litter substrate mass loss Pleioblastus amarus
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部