Assessing and accounting for material consumption and environmental impact are necessary to measure environmental externalities of the aluminum industry and to construct an ecological civilization.In this research,lif...Assessing and accounting for material consumption and environmental impact are necessary to measure environmental externalities of the aluminum industry and to construct an ecological civilization.In this research,life cycle assessment(LCA)theory was used to assess the environmental impact of primary aluminum based on the lime soda Bayer process and different power generation modes,and the sources and distributions of the four selected impact categories were analyzed.The results show that,(1)Negative environmental impact of aluminum industry generally occurs from alumina extraction,carbon anode fabrication and electrolysis,particularly electrolysis and alumina extraction.Primary energy demand(PED),water use(WU),global warming potential(GWP)and freshwater eutrophication potential(FEP)are main environmental impact categories.(2)The environmental load with thermal power is higher than that with hydropower,e.g.,for the former,the greenhouse gas emission coefficient of 21800 kg CO2 eq/t(Al)will be generated,while for the latter,4910 kg CO2 eq/t(Al)will be generated.(3)Both power mode methods reflect the energy structure,whereas direct emissions reflect the technical level,indicating the potential for large energy savings and emission reductions,and some policies,related to clean power,energy efficiency and technological progress,should be made for emission reduction.展开更多
Mixed-face ground encountered in Tunnel Boring Machine(TBM) tunneling presents great challenges and may trigger potential hazards without warning. A detailed understanding of such unfavorable conditions is therefore c...Mixed-face ground encountered in Tunnel Boring Machine(TBM) tunneling presents great challenges and may trigger potential hazards without warning. A detailed understanding of such unfavorable conditions is therefore critical to a successful bored tunnel. In this paper, we firstly present a brief review of the definition, classification and the factors related to mixed-face conditions. Secondly, for a better understanding of this topic, we investigate the main difficulties and problems involved in TBM tunnelling under mixed-face ground with detailed cases. Thirdly, from the viewpoint of rock-machine interaction, we give some suggestions on the corresponding mitigation measurements from three categories:(i) selection of TBM type and modification of TBM,(ii) condition of ground and(iii) optimization of TBM operation.展开更多
The main technic and economic indices for carbon dioxide emission reduction of Chinese electric power industry are designed systematically in this paper.According to quantitative calculation and influential factor ana...The main technic and economic indices for carbon dioxide emission reduction of Chinese electric power industry are designed systematically in this paper.According to quantitative calculation and influential factor analysis on the carbon dioxide emission reduction of the industry from 1978 to 2009,the author estimates and calculates the relevant indices during the 12 th Five-Year Plan period and in 2020.Finally the author analyzes the relationship and difference between the conventional technical and economic indices for electric power planning and the new index system for the low carbon economy development.展开更多
NH3 is one of the leading causes of grey haze, and one of the main causes of serious ecological imbalances that result in environmental problems such as acid rain and air quality deterioration. At present, excessive f...NH3 is one of the leading causes of grey haze, and one of the main causes of serious ecological imbalances that result in environmental problems such as acid rain and air quality deterioration. At present, excessive fertilizer application greatly intensifies NH3 emissions intensity on farmland. In order to understand status and achievements of research on farmland NH3 emissions, the literature of farmland NH3 emission-related studies was retrieved from SCl journals and the Chinese science citation database. These are summarized with respect to the research progress on NH3 emission factors and emission reduction technologies. The future research direction of field NH3 emission and emission reduction technology need to strengthen the field observation on different soil environment and crop types, and understand the effect of NH3 emission on fertilizer application period and the proportion, temperature and organic fertilizer management in farmland mainly. The research results can provide more information about the factors that influence NH3 emissions. This study offers theoretical guidance and support directed at mitigating farmland NH3 emissions in the future.展开更多
基金Projects(71633006,71403298) supported by the National Natural Science Foundation of ChinaProjects(14YJCZH045,15YJCZH019) supported by the Ministry of Education of Humanities and Social Science,China
文摘Assessing and accounting for material consumption and environmental impact are necessary to measure environmental externalities of the aluminum industry and to construct an ecological civilization.In this research,life cycle assessment(LCA)theory was used to assess the environmental impact of primary aluminum based on the lime soda Bayer process and different power generation modes,and the sources and distributions of the four selected impact categories were analyzed.The results show that,(1)Negative environmental impact of aluminum industry generally occurs from alumina extraction,carbon anode fabrication and electrolysis,particularly electrolysis and alumina extraction.Primary energy demand(PED),water use(WU),global warming potential(GWP)and freshwater eutrophication potential(FEP)are main environmental impact categories.(2)The environmental load with thermal power is higher than that with hydropower,e.g.,for the former,the greenhouse gas emission coefficient of 21800 kg CO2 eq/t(Al)will be generated,while for the latter,4910 kg CO2 eq/t(Al)will be generated.(3)Both power mode methods reflect the energy structure,whereas direct emissions reflect the technical level,indicating the potential for large energy savings and emission reductions,and some policies,related to clean power,energy efficiency and technological progress,should be made for emission reduction.
基金Financial supports from the National Natural Science Foundation of China(No.51308196)
文摘Mixed-face ground encountered in Tunnel Boring Machine(TBM) tunneling presents great challenges and may trigger potential hazards without warning. A detailed understanding of such unfavorable conditions is therefore critical to a successful bored tunnel. In this paper, we firstly present a brief review of the definition, classification and the factors related to mixed-face conditions. Secondly, for a better understanding of this topic, we investigate the main difficulties and problems involved in TBM tunnelling under mixed-face ground with detailed cases. Thirdly, from the viewpoint of rock-machine interaction, we give some suggestions on the corresponding mitigation measurements from three categories:(i) selection of TBM type and modification of TBM,(ii) condition of ground and(iii) optimization of TBM operation.
文摘The main technic and economic indices for carbon dioxide emission reduction of Chinese electric power industry are designed systematically in this paper.According to quantitative calculation and influential factor analysis on the carbon dioxide emission reduction of the industry from 1978 to 2009,the author estimates and calculates the relevant indices during the 12 th Five-Year Plan period and in 2020.Finally the author analyzes the relationship and difference between the conventional technical and economic indices for electric power planning and the new index system for the low carbon economy development.
基金National Natural Science Foundation of China(41375144,41565009,41675140)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-13-B06)Youth Innovative Talents Plan for 2016,Inner Mongolia
文摘NH3 is one of the leading causes of grey haze, and one of the main causes of serious ecological imbalances that result in environmental problems such as acid rain and air quality deterioration. At present, excessive fertilizer application greatly intensifies NH3 emissions intensity on farmland. In order to understand status and achievements of research on farmland NH3 emissions, the literature of farmland NH3 emission-related studies was retrieved from SCl journals and the Chinese science citation database. These are summarized with respect to the research progress on NH3 emission factors and emission reduction technologies. The future research direction of field NH3 emission and emission reduction technology need to strengthen the field observation on different soil environment and crop types, and understand the effect of NH3 emission on fertilizer application period and the proportion, temperature and organic fertilizer management in farmland mainly. The research results can provide more information about the factors that influence NH3 emissions. This study offers theoretical guidance and support directed at mitigating farmland NH3 emissions in the future.