期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
IaaS模式“云训练”资源预测-调度方法 被引量:1
1
作者 朱元昌 陈志佳 +1 位作者 邸彦强 冯少冲 《系统工程与电子技术》 EI CSCD 北大核心 2016年第2期323-331,共9页
基础设施即服务(infrastructure as a service,IaaS)模式"云训练"是基于IaaS云计算提出的武器装备系统模拟训练的模式,根据用户需求对训练资源进行预测调度是提高训练效果的重要保证。分析了"云训练"中用户任务、... 基础设施即服务(infrastructure as a service,IaaS)模式"云训练"是基于IaaS云计算提出的武器装备系统模拟训练的模式,根据用户需求对训练资源进行预测调度是提高训练效果的重要保证。分析了"云训练"中用户任务、资源需求特点,采用阈值法进行预处理,通过动态权值系综模型得到预处理结果。在此基础上,提出基于减法-模糊聚类的模糊神经网络的资源需求预测方法(subtractive-fuzzy clustering based fuzzy neural network,SFCFNN),并引入自适应学习率和动量项以提升收敛速度和稳定性。调度器根据预测结果实现用户需求与资源之间的动态匹配。实验表明该方法可精确预测用户资源需求,实现资源动态调度,有效提高资源利用率与训练效果。 展开更多
关键词 基础设施即服务 云训练 模糊神经网络 阈值法 减法-模糊聚类 预测-调度
下载PDF
Novel robust approach for constructing Mamdani-type fuzzy system based on PRM and subtractive clustering algorithm 被引量:1
2
作者 褚菲 马小平 +1 位作者 王福利 贾润达 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2620-2628,共9页
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst... A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values. 展开更多
关键词 Mamdani-type fuzzy system robust system subtractive clustering algorithm outlier partial robust M-regression
下载PDF
基于多元Hamacher-ANFIS的股票价格预测
3
作者 张峰袆 廖志高 张峰祎 《数学的实践与认识》 北大核心 2015年第20期52-60,共9页
应用减法-模糊聚类算法、多元Hamacher算子以及自适应神经模糊推理系统(ANFIS)提出了一种中国股票市场价格建模及预测的多元Hamacher-ANFIS模型.首先多元Hamacher算子与ANFIS相结合,对ANFIS种各规则的隶属度测度机制和规则参数更新机制... 应用减法-模糊聚类算法、多元Hamacher算子以及自适应神经模糊推理系统(ANFIS)提出了一种中国股票市场价格建模及预测的多元Hamacher-ANFIS模型.首先多元Hamacher算子与ANFIS相结合,对ANFIS种各规则的隶属度测度机制和规则参数更新机制进行了修正,建立基于减法-模糊聚类的多元HamacherANIFS模型;再从沪深两市各选取了总市值最大的5支股票,计算出它们在同一时间段的历史波动率,并以此为依据得到模型对该股票预测性能的权重;最后运用减法-模糊聚类算法初始化模型参数,对每个数据组进行5重交叉检验,并根据之前得到的权重计算出模型关于检验集的综合R2值.实验结果证明,与现有方法相比,该模型增强了对复杂目标函数的学习能力,提高了对股票价格的预测精度. 展开更多
关键词 减法-模糊聚类 自适应神经模糊推理系统 多元哈马邱尔算子 股价预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部