China is going through a rapid development stage of industrialization and urbanization.Although tremendous achievements have been made in the aspects of energy conservation,improvement of energy effectiveness and deve...China is going through a rapid development stage of industrialization and urbanization.Although tremendous achievements have been made in the aspects of energy conservation,improvement of energy effectiveness and development of new and renewable energies,because of the rapid development of economy,it is difficult to change the huge total amount and fast increase of CO2 emission in the near future.China has to confront the tough challenge to address global climate change.China plans to reduce carbon intensity,that is,CO2 emissions per unit GDP,by 40 to 45% by 2020 compared with the 2005 level.It is a strategic option to coordinate domestic sustainable development with coping with global climate change on the basis of China's national circumstances,representing the core content and key measures for transforming development pattern and realizing low-carbon development.To achieve the target,more capital and technology inputs are required for energy conservation and low-carbon development during the twelfth and Thirteenth Five Year Plan period than in the Eleventh Five Year Plan period.In addition,energy conservation achieved by structural adjustment,industrial upgrading and product value-added improvement is also expected to play a greater role.Therefore,China should strengthen technological innovation,make greater efforts to transform the development pattern,take advantage of the synergistic effect of policies and measures while coping with global climate change and building a domestic tow-oriented society.China should also establish an industrial system characterized by low-carbon emission.Then China will ultimately achieve a win-win situation in both domestic sustainable development and coping with global climate change.展开更多
This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marg...This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marginal abatement cost of CO2 emissions for sample cities was 967 yuan/ton. In terms of region, CO: marginal abatement cost is significantly higher in China's eastern region than in central and western regions; in terms of provincial-level region, it is the highest in Shanghai and the lowest in Shaanxi in terms of city, it is the highest in Shanghai and the lowest in Zhangjiajie with the ratio between their medians being at 48:1; in terms of time, marginal abatement cost has been always on the rise with significant intercity disparities. There is a U-shaped curve relationship between marginal abatement cost of cities and CO2 emissions per unit of GDP, which is negatively correlated with the share of secondary industry and positively correlated with the level of urbanization.展开更多
文摘China is going through a rapid development stage of industrialization and urbanization.Although tremendous achievements have been made in the aspects of energy conservation,improvement of energy effectiveness and development of new and renewable energies,because of the rapid development of economy,it is difficult to change the huge total amount and fast increase of CO2 emission in the near future.China has to confront the tough challenge to address global climate change.China plans to reduce carbon intensity,that is,CO2 emissions per unit GDP,by 40 to 45% by 2020 compared with the 2005 level.It is a strategic option to coordinate domestic sustainable development with coping with global climate change on the basis of China's national circumstances,representing the core content and key measures for transforming development pattern and realizing low-carbon development.To achieve the target,more capital and technology inputs are required for energy conservation and low-carbon development during the twelfth and Thirteenth Five Year Plan period than in the Eleventh Five Year Plan period.In addition,energy conservation achieved by structural adjustment,industrial upgrading and product value-added improvement is also expected to play a greater role.Therefore,China should strengthen technological innovation,make greater efforts to transform the development pattern,take advantage of the synergistic effect of policies and measures while coping with global climate change and building a domestic tow-oriented society.China should also establish an industrial system characterized by low-carbon emission.Then China will ultimately achieve a win-win situation in both domestic sustainable development and coping with global climate change.
基金supported by the National Natural Sciences Foundation(Approval No.41201582)Beijing Natural Sciences Foundation(9152011)+1 种基金Mingde Scholars Program of Renmin University of China(Approval No.13XNJ016)Peking University-Lincoln Institute Center for Urban Development and Land Policy
文摘This paper investigates the marginal abatement cost (MAC) of CO: emissions across 104 Chinese cities between 2001 and 2008. Based on parametric directional distance function, this paper discovers that the mean marginal abatement cost of CO2 emissions for sample cities was 967 yuan/ton. In terms of region, CO: marginal abatement cost is significantly higher in China's eastern region than in central and western regions; in terms of provincial-level region, it is the highest in Shanghai and the lowest in Shaanxi in terms of city, it is the highest in Shanghai and the lowest in Zhangjiajie with the ratio between their medians being at 48:1; in terms of time, marginal abatement cost has been always on the rise with significant intercity disparities. There is a U-shaped curve relationship between marginal abatement cost of cities and CO2 emissions per unit of GDP, which is negatively correlated with the share of secondary industry and positively correlated with the level of urbanization.