A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principl...A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principle. The characteristics of wave propagation in unit cell were analyzed by transfer matrix formulation. Numerical examples were given to illustrate the effectiveness of the periodic mount. The experiments were carried out to identify the predications of the theoretical model. The obtained results show that the experimental results coincide with the prediction of theoretical model. No pass bands appear in the overall frequency range measured when waves propagate in the longitude direction of the periodic mount. These dramatic results demonstrate its potential as an excellent mount in attenuating and isolating vibration transmission.展开更多
Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li1.5Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. ...Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li1.5Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO--Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1,500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.展开更多
基金Project(50775225) supported by the National Natural Science Foundation of China
文摘A novel periodic mount was presented. A theoretical model was developed to describe the dynamics of wave propagation in the novel periodic mount. The model was derived using Hamilton's energy conservation principle. The characteristics of wave propagation in unit cell were analyzed by transfer matrix formulation. Numerical examples were given to illustrate the effectiveness of the periodic mount. The experiments were carried out to identify the predications of the theoretical model. The obtained results show that the experimental results coincide with the prediction of theoretical model. No pass bands appear in the overall frequency range measured when waves propagate in the longitude direction of the periodic mount. These dramatic results demonstrate its potential as an excellent mount in attenuating and isolating vibration transmission.
文摘Silicon (Si) has the highest known theoretical specific capacity (3,590 mAh/g for Li1.5Si4, and 4,200 mAh/g for Li22Si4) as a lithium-ion battery anode, and has attracted extensive interest in the past few years. However, its application is limited by poor cyclability and early capacity fading due to significant volume changes during lithiation and delithiation processes. In this work, we report a coaxial silicon/anodic titanium oxide/silicon (Si-ATO--Si) nanotube array structure grown on a titanium substrate demonstrating excellent electrochemical cyclability. The ATO nanotube scaffold used for Si deposition has many desirable features, such as a rough surface for enhanced Si adhesion, and direct contact with the Ti substrate working as current collector. More importantly, our ATO scaffold provides a rather unique advantage in that Si can be loaded on both the inner and outer surfaces, and an inner pore can be retained to provide room for Si volume expansion. This coaxial structure shows a capacity above 1,500 mAh/g after 100 cycles, with less than 0.05% decay per cycle. Simulations show that this improved performance can be attributed to the lower stress induced on Si layers upon lithiation/delithiation compared with some other recently reported Si-based nanostructures.