The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential...The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.展开更多
The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures...The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures including full lamellae with cellular growth morphology and massive structure with dendritic growth morphology were examined.The results show that the heat treatment of 1250 ℃ for 24 h + 900 ℃ for 30 min+air cooling can efficiently eliminate the B2 phase in the DS alloys and change the massive structure of the rapid DS alloy into lamellar microstructure.Columnar lamellar colonies with widths of 150-200 μm and 50-100 μm respectively were observed in intercellular and dendritic arm regions.The heat treatment of 1 400 ℃ for 12 h+900 ℃ for 30 min+air cooling could simultaneously remove the B2 phase,massive structure and solidification segregations from the DS alloys,however,it caused severe growth of grains.展开更多
The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formati...The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase.展开更多
The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental resul...The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.展开更多
The effects of Mg content and cooling rate on the solidification behaviour of Al-7%Si-Mg(mass fraction) casting alloys have been investigated using differential scanning calorimetry, differential thermal analysis an...The effects of Mg content and cooling rate on the solidification behaviour of Al-7%Si-Mg(mass fraction) casting alloys have been investigated using differential scanning calorimetry, differential thermal analysis and microscopy. The Mg contents were selected as respectively 0.00%, 0.35% and 0.70%(mass fraction). DTA curves of Al-7%Si-0.55%Mg(mass fraction) alloy at various cooling rates were accomplished and the alloy melt was cast in different cooling rates. The results indicate that increasing Mg content can lower the liquidus and binary Al-Si eutectic transformation temperatures. Large Fe-rich π-phases (Al8FeMg3Si6) are found in the 0.70% Mg alloys together with some small β-phases (Al5FeSi); in contrast, only β-phases are observed in the 0.35% Mg alloys. The test results of the Al-7%Si-0.55%Mg alloys identify that the liquidus and binary Al-Si eutectic transformation temperatures decrease, and the quantity of ternary Al-Si-Mg2Si eutectic phase decreases as the cooling rate increases.展开更多
The Ti-46A1-6Nb (mole fraction, %) ingots that were directionally solidified by cold crucible were cyclic heat treated at 1330 ℃ in the a phase region. The microstructures and mechanical properties of the ingots be...The Ti-46A1-6Nb (mole fraction, %) ingots that were directionally solidified by cold crucible were cyclic heat treated at 1330 ℃ in the a phase region. The microstructures and mechanical properties of the ingots before and after heat treatment were investigated. The results show that the large columnar grains are changed into equiaxed grains after heat treatment. The grain size decreases with increasing the cyclic times, which is caused by the recrystallization and the transition from the large grain of small lamellae to the small grain of large lamellae. Four times of cyclic heat treatment refines the grain size from 1.33 mm to 0.59 turn, nevertheless the lamellar spacing increases from 0.71 ~tm to 1.38 lim. Extending the holding time and increasing the cyclic times of heat treatment eliminate the fl-segregation at the grain boundary and the interlamellar. The compression testing shows that the compressive strength of the directionally solidified ingot in the parallel and perpendicular directions are 1385.09 MPa and 1267.79 MPa, respectively, which are improved to 1449.75 MPa and 1527.76 MPa after two and four times of cyclic heat treatment, respectively, while that is 1180.64 MPa for the as-cast sample. The fracture mode of the sample after cyclic heat treatment is quasi-cleavage fracture.展开更多
Nb-16Si-24Ti-10Cr-2A1-2Hf alloy was directionally solidified with withdrawal rates of 1.2, 6, 18, 36 and 50 mrn/min and then heat treated at 1400, 1450 and 1500℃with withdrawal rate of 50 mm/min for 10 h. The effects...Nb-16Si-24Ti-10Cr-2A1-2Hf alloy was directionally solidified with withdrawal rates of 1.2, 6, 18, 36 and 50 mrn/min and then heat treated at 1400, 1450 and 1500℃with withdrawal rate of 50 mm/min for 10 h. The effects of withdrawal rate and heat treatment temperature on the microstructure were studied. The microstructure of directionally solidified alloy was composed of the primary NbsSi3, Nbss/NbsSi3 eutectic cells and Cr2Nb, which distribute paralleled to the growth direction. The microstructure becomes more refined with the increasing withdrawal rate, accompany with the evolution of eutectic cells morphology. After heat treatment, Nbss phase connects and forms a continuous matrix, and the Cr2Nb phase becomes smaller and distributes more dispersedly. After heat treatment at 1450 ℃ for 10 h, the alloy achieves balance between the optimization of microstructure and alleviation of solute segregation.展开更多
The solidification microstructure,fracture morphologies,and mechanical properties of an Al-18Si alloy and alloys modified with Al-5Ti and Al-3P master alloys were investigated using an optical microscope,scanning elec...The solidification microstructure,fracture morphologies,and mechanical properties of an Al-18Si alloy and alloys modified with Al-5Ti and Al-3P master alloys were investigated using an optical microscope,scanning electron microscope,and an electronic universal testing machine.The results show that additions of Al-5Ti and Al-3P have significant effects on the size and area fraction of the primary Si and the mechanical properties of the Al-18Si alloy.Compared to the Al-18Si alloy modified with 0.6 wt%Al-5Ti at 850°C,when the Al-18Si alloy was modified with 0.3 wt%Al-5Ti and 0.5 wt%Al-3P at the same temperature,the average size of the primary Si decreased from 39 to 14μm and the area fraction increased from 9.5%to 11.6%.The biggest influencing factor on the tensile strength and elongation of the Al-18Si alloy is the addition of Al-3P,followed by the modification temperature and the addition of Al-5Ti.At a modification temperature of 850°C,the tensile strength and elongation of the Al-18Si alloy modified with 0.3 wt%Al-5Ti+0.5 wt%Al-3P increased by 19.6%and 88.6%,respectively compared to that of the Al-18Si alloy modified with 0.6 wt%Al-5Ti.展开更多
Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chroma...Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.展开更多
The microstructural evolution and tensile properties of a forged Ti−42Al−5Mn alloy subjected to different heat treatments were studied.The results showed that,when the forged alloy was aged at 800℃ for 24 h,the inter...The microstructural evolution and tensile properties of a forged Ti−42Al−5Mn alloy subjected to different heat treatments were studied.The results showed that,when the forged alloy was aged at 800℃ for 24 h,the interlamellar spacing(λ)andγgrain size at colony boundaries are generally coarsened.Whereas,when the alloy was first annealed at 1300℃ and then aged at 800℃ for 24 h,this coarsening of related microstructures appears less pronounced.The suggested annealing temperatures for the forged Ti−42Al−5Mn alloy are in the range of 1250−1300℃.It was found that,on the condition of the same annealing system,both the strength and ductility were improved as the aging temperature changed from 1000 to 800℃.The secondary precipitatedβo(β_(o,sec))at colony boundaries could be responsible for improving the strength,and theγphase at colony boundaries with the grain size about 6μm might be one of the main reasons for the better ductility.展开更多
The present research is focused on the effects of standard heat treatment on the microstructure and mechanical properties of diffusion brazed IN-738 LC superalloy.Three distinct heat treatment cycles of full solution ...The present research is focused on the effects of standard heat treatment on the microstructure and mechanical properties of diffusion brazed IN-738 LC superalloy.Three distinct heat treatment cycles of full solution annealing,partial solution annealing,and aging treatment were applied to the bonded specimens,sequentially.The results reveal that bonding at 1120℃for 5 min leads to incomplete isothermal solidification and formation of eutectic phases including Ni-and Cr-rich borides in the joint centerline.Increasing the holding time to 45 min leads to the full isothermal solidification and formation of a nickel proeutectic solid-solution phase(γ)in the joints.The standard heat treatment of isothermally solidified and non-isothermally solidified specimens results in the complete elimination of the boride phases in the diffusion-affected zone and also the formation ofγ’precipitates in the isothermally solidified zone.However,discontinuously re-solidified products are observed in joint district in the non-isothermally solidified sample.The highest shear strength(~801 MPa)is achieved for isothermally solidified specimen after standard heat treatment;this strength is approximately 99%that of the substrate material.展开更多
The phase field simulation has been actively studied as a powerful method to investigate the microstructural evolution during the solidification.However,it is a great challenge to perform the phase field simulation in...The phase field simulation has been actively studied as a powerful method to investigate the microstructural evolution during the solidification.However,it is a great challenge to perform the phase field simulation in large length and time scale.The developed graphics processing unit(GPU)calculation is used in the phase filed simulation,greatly accelerating the calculation efficiency.The results show that the computation with GPU is about 36 times faster than that with a single Central Processing Unit(CPU)core.It provides the feasibility of the GPU-accelerated phase field simulation on a desktop computer.The GPU-accelerated strategy will bring a new opportunity to the application of phase field simulation.展开更多
基金Project (14) supported by Postdoctoral Science Foundation of Central South University, ChinaProject (2008AA03A233) supported by the High-tech Research and Development Program of China
文摘The microstructures and phase transformation of Ti-43Al-4Nb alloy in as-cast and heat-treated states were investigated by using optical microscopy, scanning and transmission electron microscopy as well as differential scanning calorimetry. The results show that a fine microstructure of the as-cast alloy can be obtained by solidifying through the β phase. γ grains can nucleate directly from the β phase. The coexistence of β phase and γ phase along primary α grain boundaries contributes to the decrease in the grain size of the as-cast alloy. The phase transformation sequence during solidification of the Ti-43Al-4Nb alloy is suggested as L→L+β→β→α+β→α+βr→α+γ+βr→lamellae(α2+γ)+γ+βr. The microstructure of the alloy after heat treatment at 1 250 ℃ for 16 h exhibits a certain coarsening compared with that of the as-cast state. The remnant β phase can be removed by the heat treatment process due to the diffusion of Nb and the non-equilibrium state of β phase.
基金Projects(50771013,50871127)supported by the National Natural Science Foundation of China
文摘The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures including full lamellae with cellular growth morphology and massive structure with dendritic growth morphology were examined.The results show that the heat treatment of 1250 ℃ for 24 h + 900 ℃ for 30 min+air cooling can efficiently eliminate the B2 phase in the DS alloys and change the massive structure of the rapid DS alloy into lamellar microstructure.Columnar lamellar colonies with widths of 150-200 μm and 50-100 μm respectively were observed in intercellular and dendritic arm regions.The heat treatment of 1 400 ℃ for 12 h+900 ℃ for 30 min+air cooling could simultaneously remove the B2 phase,massive structure and solidification segregations from the DS alloys,however,it caused severe growth of grains.
基金Project (08dj1400402) supported by the Major Program for the Fundamental Research of Shanghai Committee of Science and Technology,China
文摘The effects of phosphorus and boron addition on the as-cast microstructure and homogenization parameters of Inconel 718 were studied. The results indicate that the addition of phosphorus and boron promotes the formation of blocky Laves phase. Due to the strong segregation behavior of boron in the final residual liquid, a low melting B-bearing phase enriched in Nb, Mo and Cr is observed. According to the differential scanning calorimeter results and electron probe micro-analysis characterization, the solidification sequence of Inconel 718 with phosphorus and boron addition in best combination is determined as L→L+γ→L+γ+MC→L+γ+MC+Laves→γ+MC+Laves+MC+Laves+B-bearing phase. Accordingly, the homogenization temperature is recommended to be adjusted at least 40°C lower than that of standard Inconel 718 due to the existence of low melting B-bearing phase.
基金Projects(51074031,51271042,50874022)supported by the National Natural Science Foundation of ChinaProject(2013M530913)supported by the China Postdoctoral Science FoundationProject(DUT12RC(3)35)supported by the Fundamental Research Funds for the Central Universities of China
文摘The combined effects of direct current pulsed magnetic field (DC-PMF) and inoculation on pure aluminum were investigated, the grain refinement behavior of DC-PMF and inoculation was discussed. The experimental results indicate that the solidification micro structure of pure aluminum can be greatly refined under DC-PMF. Refinement of pure aluminum is attributed to electromagnetic undercooling and forced convection caused by DC-PMF. With single DC-PMF, the grain size in the equiaxed zone is uneven. However, under DC-PMF, by adding 0.05% (mass fraction) Al5Ti-B, the grain size of the sample is smaller, and the size distribution is more uniform than that of single DC-PMF. Furthermore, under the combination of DC-PMF and inoculation, with the increase of output current, the grain size is further reduced. When the output current increases to 100 A, the average grain size can decrease to 113 μn.
基金Project (G2000067202) supported by the National Major Basic Research Program of China
文摘The effects of Mg content and cooling rate on the solidification behaviour of Al-7%Si-Mg(mass fraction) casting alloys have been investigated using differential scanning calorimetry, differential thermal analysis and microscopy. The Mg contents were selected as respectively 0.00%, 0.35% and 0.70%(mass fraction). DTA curves of Al-7%Si-0.55%Mg(mass fraction) alloy at various cooling rates were accomplished and the alloy melt was cast in different cooling rates. The results indicate that increasing Mg content can lower the liquidus and binary Al-Si eutectic transformation temperatures. Large Fe-rich π-phases (Al8FeMg3Si6) are found in the 0.70% Mg alloys together with some small β-phases (Al5FeSi); in contrast, only β-phases are observed in the 0.35% Mg alloys. The test results of the Al-7%Si-0.55%Mg alloys identify that the liquidus and binary Al-Si eutectic transformation temperatures decrease, and the quantity of ternary Al-Si-Mg2Si eutectic phase decreases as the cooling rate increases.
基金Project(2011CB605504) supported by the National Basic Research Program of ChinaProject(NCET-12-0153) supported by the Program of New Century Excellent Talents in UniversityProject(51274076) supported by the National Natural Science of Foundation of China
文摘The Ti-46A1-6Nb (mole fraction, %) ingots that were directionally solidified by cold crucible were cyclic heat treated at 1330 ℃ in the a phase region. The microstructures and mechanical properties of the ingots before and after heat treatment were investigated. The results show that the large columnar grains are changed into equiaxed grains after heat treatment. The grain size decreases with increasing the cyclic times, which is caused by the recrystallization and the transition from the large grain of small lamellae to the small grain of large lamellae. Four times of cyclic heat treatment refines the grain size from 1.33 mm to 0.59 turn, nevertheless the lamellar spacing increases from 0.71 ~tm to 1.38 lim. Extending the holding time and increasing the cyclic times of heat treatment eliminate the fl-segregation at the grain boundary and the interlamellar. The compression testing shows that the compressive strength of the directionally solidified ingot in the parallel and perpendicular directions are 1385.09 MPa and 1267.79 MPa, respectively, which are improved to 1449.75 MPa and 1527.76 MPa after two and four times of cyclic heat treatment, respectively, while that is 1180.64 MPa for the as-cast sample. The fracture mode of the sample after cyclic heat treatment is quasi-cleavage fracture.
基金Project(51101005)supported by the National Natural Science Foundation of China
文摘Nb-16Si-24Ti-10Cr-2A1-2Hf alloy was directionally solidified with withdrawal rates of 1.2, 6, 18, 36 and 50 mrn/min and then heat treated at 1400, 1450 and 1500℃with withdrawal rate of 50 mm/min for 10 h. The effects of withdrawal rate and heat treatment temperature on the microstructure were studied. The microstructure of directionally solidified alloy was composed of the primary NbsSi3, Nbss/NbsSi3 eutectic cells and Cr2Nb, which distribute paralleled to the growth direction. The microstructure becomes more refined with the increasing withdrawal rate, accompany with the evolution of eutectic cells morphology. After heat treatment, Nbss phase connects and forms a continuous matrix, and the Cr2Nb phase becomes smaller and distributes more dispersedly. After heat treatment at 1450 ℃ for 10 h, the alloy achieves balance between the optimization of microstructure and alleviation of solute segregation.
基金Project(51571039) supported by the National Natural Science Foundation of China
文摘The solidification microstructure,fracture morphologies,and mechanical properties of an Al-18Si alloy and alloys modified with Al-5Ti and Al-3P master alloys were investigated using an optical microscope,scanning electron microscope,and an electronic universal testing machine.The results show that additions of Al-5Ti and Al-3P have significant effects on the size and area fraction of the primary Si and the mechanical properties of the Al-18Si alloy.Compared to the Al-18Si alloy modified with 0.6 wt%Al-5Ti at 850°C,when the Al-18Si alloy was modified with 0.3 wt%Al-5Ti and 0.5 wt%Al-3P at the same temperature,the average size of the primary Si decreased from 39 to 14μm and the area fraction increased from 9.5%to 11.6%.The biggest influencing factor on the tensile strength and elongation of the Al-18Si alloy is the addition of Al-3P,followed by the modification temperature and the addition of Al-5Ti.At a modification temperature of 850°C,the tensile strength and elongation of the Al-18Si alloy modified with 0.3 wt%Al-5Ti+0.5 wt%Al-3P increased by 19.6%and 88.6%,respectively compared to that of the Al-18Si alloy modified with 0.6 wt%Al-5Ti.
文摘Wastewater, which involves easy-soluble reactive dyes, especially non-degradable dyes, is very difficult to decolor efficiently by normal processes such as coagulation process and biological treatment. The high chromaticity se- riously hinders the reuse of reactive dye waste water. In this paper, a new method by bentonite adsorption and coagulation (PAC) is employed for removing color from synthetic dye waste water which contains reactive red K-2G, K-RN blue, K-GR blue, X-3B red, K-GN orange, KB-3G yellow, K-2BP red, K-RN yellow and K-6G yellow. Bentonite pre- treated by 4% CTMAB and milled to 160 order screen is proven to the best decoloring agent. For a 100 mL reactive red K-2G sample (CODcr 400 mg/L, 25 000 chromaticity color), 0.5 g bentonite pretreated and 2.5 mL PAC is enough to decolor wastewater up to 99.92% and the sediment time is short. Non-degradable dyes such as active red X-3B and K-GN orange are declored completely as well. Raw sewage (low chromaticity color) is decolored completely at a ben-tonite dosage of 0.001g. More researches prove the high practical value of this process.
基金the Jihua Laboratory Scientific Research Project,China (No.X210291TL210)the National Natural Science Foundation of China (No.51971215)the Natural Science Foundation of Liaoning Province of China (No.2019-MS-330)。
文摘The microstructural evolution and tensile properties of a forged Ti−42Al−5Mn alloy subjected to different heat treatments were studied.The results showed that,when the forged alloy was aged at 800℃ for 24 h,the interlamellar spacing(λ)andγgrain size at colony boundaries are generally coarsened.Whereas,when the alloy was first annealed at 1300℃ and then aged at 800℃ for 24 h,this coarsening of related microstructures appears less pronounced.The suggested annealing temperatures for the forged Ti−42Al−5Mn alloy are in the range of 1250−1300℃.It was found that,on the condition of the same annealing system,both the strength and ductility were improved as the aging temperature changed from 1000 to 800℃.The secondary precipitatedβo(β_(o,sec))at colony boundaries could be responsible for improving the strength,and theγphase at colony boundaries with the grain size about 6μm might be one of the main reasons for the better ductility.
基金support from Ferdowsi University of Mashhad(FUM)under the research scheme(No.2/45210)。
文摘The present research is focused on the effects of standard heat treatment on the microstructure and mechanical properties of diffusion brazed IN-738 LC superalloy.Three distinct heat treatment cycles of full solution annealing,partial solution annealing,and aging treatment were applied to the bonded specimens,sequentially.The results reveal that bonding at 1120℃for 5 min leads to incomplete isothermal solidification and formation of eutectic phases including Ni-and Cr-rich borides in the joint centerline.Increasing the holding time to 45 min leads to the full isothermal solidification and formation of a nickel proeutectic solid-solution phase(γ)in the joints.The standard heat treatment of isothermally solidified and non-isothermally solidified specimens results in the complete elimination of the boride phases in the diffusion-affected zone and also the formation ofγ’precipitates in the isothermally solidified zone.However,discontinuously re-solidified products are observed in joint district in the non-isothermally solidified sample.The highest shear strength(~801 MPa)is achieved for isothermally solidified specimen after standard heat treatment;this strength is approximately 99%that of the substrate material.
基金supported by the China Postdoctoral Science Foundation(Grant No.2013M540772)the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.61203233,51101124,51101125)
文摘The phase field simulation has been actively studied as a powerful method to investigate the microstructural evolution during the solidification.However,it is a great challenge to perform the phase field simulation in large length and time scale.The developed graphics processing unit(GPU)calculation is used in the phase filed simulation,greatly accelerating the calculation efficiency.The results show that the computation with GPU is about 36 times faster than that with a single Central Processing Unit(CPU)core.It provides the feasibility of the GPU-accelerated phase field simulation on a desktop computer.The GPU-accelerated strategy will bring a new opportunity to the application of phase field simulation.