Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four typ...Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.展开更多
The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interfa...The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interface morphologies transform alternately with increasing magnetic flux density (B≤10.3 mT). The interface morphology transforms from shallow cellular to deep cellular morphology under a weak downward TMF (B=3.2 mT). When the magnetic flux density increases further, both sides of the interface morphology appear to be slightly inconsistent, but they roughly tend to be planar under a strong downward TMF (BS10.3 mT). The interface instability may be attributed to the flow driven by the TMF. Moreover, the shape of interface appears to be almost flat under an upward TMF, but deflective under a downward TMF.展开更多
A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrit...A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrite tip, interface curvature and anisotropy of the surface energy were extended to 3-D system in the model. Therefore, the model was able to describe the morphology evolution of 3-D dendrites. Then, the model was applied to simulate the mechanism of spacing adjustment for 3-D columnar dendrite growth, and the competitive growth of columnar dendrites with different preferred growth orientations under constant temperature gradient and pulling velocity. Directional solidification experiments of NH4Cl-H2O transparent alloy were performed. It was found that the simulated results compared well with the experimental results. Therefore, the model was reliable for simulating the 3-D dendrite growth of cubic system alloys.展开更多
The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.I...The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.In numerical simulation aspect, finite difference(FD)method and modified cellular automaton(MCA)model were used to simulate the macro-temperature field, micro-concentration field,nucleation and grain growth of Cu-0.6Cr alloy using real data from actual casting operations.From the observed casting experiment,the preliminary grain morphologies are the directional columnar grains by the VCC process.The solidification morphologies by MCAFD model are in agreement with the result of actual casting experiment well.展开更多
An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural char...An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.展开更多
基金Project(51201130)supported by the National Natural Science Foundation of ChinaProject(2012JQ6005)supported by the Natural Science Basic Research Plan in Shaanxi Province of China+2 种基金Project(SKLSP201226)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,ChinaProject(11JK0805)supported by Scientific Research Program Funded by Shaanxi Provincial Education Department,ChinaProject(2010CV631201)supported by the National Basic Research Program of China
文摘Single crystal superalloys of AM3 with different carbon levels were prepared at withdraw rate of 50μm/s. The effect of carbon addition on the carbide morphology was investigated. It was found that there were four types of MC-type carbides, acicular, nodular, blocky, and Chinese script-type in the crystals. With an increase in carbon level, the volume fraction of carbide increased significantly while the volume fraction of eutectic decreased significantly. Furthermore, the size of carbide in high level carbon alloy became much larger.
基金Project(50774061) supported by the National Natural Science Foundation of ChinaProject(28-TP-2009) supported by the Research Fund of State Key Laboratory of Solidification Processing(NWPU),China
文摘The diversity of interface morphologies is observed for directionally solidified Sn-0.65%Cd alloy under a travelling magnetic field (TMF) in the 4 mm-diameter sample. Under an upward TMF, planar and cellular interface morphologies transform alternately with increasing magnetic flux density (B≤10.3 mT). The interface morphology transforms from shallow cellular to deep cellular morphology under a weak downward TMF (B=3.2 mT). When the magnetic flux density increases further, both sides of the interface morphology appear to be slightly inconsistent, but they roughly tend to be planar under a strong downward TMF (BS10.3 mT). The interface instability may be attributed to the flow driven by the TMF. Moreover, the shape of interface appears to be almost flat under an upward TMF, but deflective under a downward TMF.
基金Projects (2005CB724105, 2011CB706801) supported by the National Basic Research Program of ChinaProjects (10477010, 51171089) supported by the National Natural Science Foundation of China+1 种基金Project (2007AA04Z141) supported by the High-Tech Research and Development Program of ChinaProjects (2009ZX04006-041-04, 2011ZX04014-052) supported by the Important National Science & Technology Specific
文摘A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrite tip, interface curvature and anisotropy of the surface energy were extended to 3-D system in the model. Therefore, the model was able to describe the morphology evolution of 3-D dendrites. Then, the model was applied to simulate the mechanism of spacing adjustment for 3-D columnar dendrite growth, and the competitive growth of columnar dendrites with different preferred growth orientations under constant temperature gradient and pulling velocity. Directional solidification experiments of NH4Cl-H2O transparent alloy were performed. It was found that the simulated results compared well with the experimental results. Therefore, the model was reliable for simulating the 3-D dendrite growth of cubic system alloys.
文摘The purpose of this study is to predict the morphologies in the solidification process for Cu-0.6Cr(mass fraction,%)alloy by vacuum continuous casting(VCC)and verify its accuracy by the observed experimental results.In numerical simulation aspect, finite difference(FD)method and modified cellular automaton(MCA)model were used to simulate the macro-temperature field, micro-concentration field,nucleation and grain growth of Cu-0.6Cr alloy using real data from actual casting operations.From the observed casting experiment,the preliminary grain morphologies are the directional columnar grains by the VCC process.The solidification morphologies by MCAFD model are in agreement with the result of actual casting experiment well.
基金Projects(50671116,50901081) supported by the National Natural Science Foundation of China
文摘An 8 mm-high NiCoCrAlYTa coating was epitaxially built-up on a directionally solidified (DS) Ni-based superalloy blade tip by electro-spark deposition.Epitaxial morphologies of the coating and its microstructural characteristics were investigated by means of SEM,XRD and TEM etc.It is observed that the fine column-like dendrites originated from the γ'-particles or γ'-clusters of the DS substrate and are un-continuously coarsened.The β-phase particles precipitate and grow eutectically with the γ-phase.The orientation of fine column dendrites depends on electro-spark deposition processing parameters and the microstructure can be characterized with superfine γ and β phases.