The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures...The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures including full lamellae with cellular growth morphology and massive structure with dendritic growth morphology were examined.The results show that the heat treatment of 1250 ℃ for 24 h + 900 ℃ for 30 min+air cooling can efficiently eliminate the B2 phase in the DS alloys and change the massive structure of the rapid DS alloy into lamellar microstructure.Columnar lamellar colonies with widths of 150-200 μm and 50-100 μm respectively were observed in intercellular and dendritic arm regions.The heat treatment of 1 400 ℃ for 12 h+900 ℃ for 30 min+air cooling could simultaneously remove the B2 phase,massive structure and solidification segregations from the DS alloys,however,it caused severe growth of grains.展开更多
A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the micros...A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃.展开更多
Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in...Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 ℃. However, it decreases when the temperature is above 400 ℃ owing to the existence of Si-Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1% is obtained after annealing at 400 ℃ for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al-Si alloy powders.展开更多
(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of di...(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.展开更多
Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution...Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution were revealed and further elucidated in terms of the heat flow mode, nucleation and growth processes under different solidification conditions. With the increase of undercooling, columnar dendrite is replaced by dispersive structure due to the immiscible effect. In contrast, equiaxed dendrite forms in spray cast alloy due to multiple nucleation events and becomes thinner for the case of higher cooling rate. Ascribed to the enhanced non-equilibrium effect and insufficient period for collision and coagulation processes between separated droplets, fine globular dispersion appears upon the diameter of spray casting reaching 4 mm. As for the melt-spun ribbon with the highest cooling rate, a single-phase solid solution microstructure with refined grain of cellular morphology can be obtained, which is attributed to the suppression of liquid phase separation by instant solidification.展开更多
Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure a...Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure and room temperature mechanical properties under the controlled solidification conditions. The specimens were solidified under steady state conditions with different temperature gradients (G=20, 25 and 30 K/mm) in a wide range of growth rates (v=10-200 μm/s) by using a Bridgman-type directional solidification furnace with liquid metal cooling (LMC) technology. The cellular microstructures are observed. The cellular spacing 2 decreases with increasing v for constant G or with increasing G for constant v. By using a linear regression analysis the relationships can be expressed as 2=136.216v^-0.2440 (G=30 K/mm) and 2=626.5630G^-0.5625 (v=10 μm/s), which are in a good agreement with Trivedi model. An improved tensile strength and a corresponding decreased elongation are achieved in the directionally solidified experimental alloy with increasing growth rate and tempertaure gradient. Furthermore, the directionally solidified experimental alloy exhibits higher room temperature tensile strength than the non-directionally solidified alloy.展开更多
Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important m...Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important materials for various applications due to the combined properties of Al matrix and reinforcements.Considering the advantages of SLM technology and PAMCs,the novel SLM PAMCs have been developed and researched in recent years.Therefore,the current research progress about the SLM PAMCs is reviewed.Firstly,special attention is paid to the solidification behavior of SLM PAMCs.Secondly,the important issues about the design and fabrication of high-performance SLM PAMCs,including the selection of reinforcement,the influence of parameters on the processing and microstructure,the defect evolution and phase control,are highlighted and discussed comprehensively.Thirdly,the performance and strengthening mechanism of SLM PAMCs are systematically figured out.Finally,future directions are pointed out on the advancement of high-performance SLM PAMCs.展开更多
The transient liquid phase(TLP)bonding of CoCuFeMnNi high entropy alloy(HEA)was studied.The TLP bonding was performed using AWS BNi-2 interlayer at 1050℃ with the TLP bonding time of 20,60,180 and 240 min.The effect ...The transient liquid phase(TLP)bonding of CoCuFeMnNi high entropy alloy(HEA)was studied.The TLP bonding was performed using AWS BNi-2 interlayer at 1050℃ with the TLP bonding time of 20,60,180 and 240 min.The effect of bonding time on the joint microstructure was characterized by SEM and EDS.Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time.For samples bonded at 20,60 and 180 min,athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound.For all samples,theγsolid solution was formed in the isothermal solidification zone of the bonding zone.To evaluate the effect of TLP bonding time on mechanical properties of joints,the shear strength and micro-hardness of joints were measured.The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints.The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min,respectively.展开更多
The effects of joining temperature(TJ)and time(tJ)on microstructure of the transient liquid phase(TLP)bonding of GTD-111 superalloy were investigated.The bonding process was applied using BNi-3 filler at temperatures ...The effects of joining temperature(TJ)and time(tJ)on microstructure of the transient liquid phase(TLP)bonding of GTD-111 superalloy were investigated.The bonding process was applied using BNi-3 filler at temperatures of 1080,1120,and 1160℃ for isothermal solidification time of 195,135,and 90 min,respectively.Homogenization heat treatment was also applied to all of the joints.The results show that intermetallic and eutectic compounds such as Ni-rich borides,Ni−B−Si ternary compound and eutectic-γcontinuously are formed in the joint region during cooling.By increasing tJ,intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well.With the increase of the holding time at all of the three bonding temperatures,the thickness of the athermally solidified zone(ASZ)and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone(DAZ)increases.Similar results are also obtained by increasing TJ from 1080 to 1160℃ at tJ=90 min.Furthermore,increasing the TJ from 1080 to 1160℃ leads to the faster elimination of intermetallic phases from the ASZ.However,these phases are again observed in the joint region at 1180℃.It is observed that by increasing the bonding temperature,the bonding width and the rate of dissolution of the base metal increase.Based on these results,increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.展开更多
The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount o...The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount of LaFeSi phase in the as-cast melt-spun ribbons prepared by a copper wheel at a speed of10m/s is less than that in the as-cast arc melting buttons with the same x values.The annealed melt-spun ribbons contain smaller amount of La(Fe,Si)13(1:13)phase than the corresponding annealed arc melting buttons.Although the melt-spun sample has finer crystalline grains ofα-Fe,as indicated by SEM analysis,its crystalline size has not reached nano-scale.Therefore,the magnetic exchange-coupling between1:13phase andα-Fe phase has not been observed in melt-spun ribbons.Further,the maximum negative magnetic entropy change(?SMax)and relative cooling power(RCP)of annealed melt-spun ribbons under a field change of0?2T are weaker than those of the corresponding annealed arc melting buttons.展开更多
Cu−0.15Zr(wt.%)alloy with uniform and fine microstructure was fabricated by rapid solidification followed by hot forging.Evolution of microstructure,mechanical properties and electrical conductivity of the alloy durin...Cu−0.15Zr(wt.%)alloy with uniform and fine microstructure was fabricated by rapid solidification followed by hot forging.Evolution of microstructure,mechanical properties and electrical conductivity of the alloy during elevated-temperature annealing were investigated.The alloy exhibits good thermal stability,and its strength decreases slightly even after annealing at 700℃ for 2 h.The nano-sized Cu_(5)Zr precipitates show significant pinning effect on dislocation moving,which is the main reason for the high strength of the alloy.Additionally,the large-size Cu_(5)Zr precipitates play a major role in retarding grain growth by pinning the grain boundaries during annealing.After annealing at 700℃ for 2 h,the electrical conductivity of samples reaches the peak value of 88%(IACS),which is attributed to the decrease of vacancy defects,dislocations,grain boundaries and Zr solutes.展开更多
Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly ...Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly limits the development of the SLM.In this study,the 316L fine powder and coarse powder with a mass ratio of 80:20,70:30 and 60:40 were mixed using a ball milling and the samples with a relative density greater than 97%were prepared by SLM.The results show that the intricate temperature gradients and surface tension gradients in SLM will produce Marangoni flow,forming a typical molten pool morphology,cellular and strip subgrain structures.And as the proportion of coarse powder increases,the scanning track morphology changes from smooth to undulating;the morphology of the molten pool and subgrain structure are weakened.Meanwhile,the unmelted particles appear on the surface of the SLM sample.On the premise of an introducing appropriate amount of large particle size powder(20%),the SLM samples still have good mechanical properties(662 MPa,47%).展开更多
In the production of AlCuFe alloy for a special application,the growth rate was changed and the results were evaluated.Changes in the eutectic spacing(microstructure)of a material due to the growth rate are known to a...In the production of AlCuFe alloy for a special application,the growth rate was changed and the results were evaluated.Changes in the eutectic spacing(microstructure)of a material due to the growth rate are known to affect its mechanical,electrical and thermal properties.To evaluate its microstructure,the eutectic composition of Al−32.5wt.%Cu−0.5wt.%Fe was prepared and directional solidification experiments were conducted using a Bridgman-type furnace at a constant temperature gradient(G=8.50 K/mm)and five growth rates(V=8.25,16.60,41.65,90.05,164.80μm/s).The effect of the growth rate on the eutectic spacing was then determined,and the resulting microhardness and ultimate tensile strength were obtained based on the change in the microstructure by regression analysis and Hall−Petch correlations.Despite the fact that the growth rate increased by approximately twenty times,the eutectic spacing decreased by a factor of approximately 5,and these changes in the growth rate and microstructure caused the mechanical properties to change by a factor of approximately 1.5.展开更多
Thermal analysis was used to investigate the microstructural evolution of Mg-7 Zn-x Cu-0.6 Zr alloys during solidification. The effect of Cu content(0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of th...Thermal analysis was used to investigate the microstructural evolution of Mg-7 Zn-x Cu-0.6 Zr alloys during solidification. The effect of Cu content(0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7 Zn-x Cu-0.6 Zr alloys was investigated with a constrained rod casting(CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7 Zn-x Cu-0.6 Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and Mg Zn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, Mg Zn Cu and Mg Zn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of Mg Zn2 and Mg Zn Cu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility(HTS) of Mg-7 Zn-x Cu-0.6 Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.展开更多
Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of t...Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of the microstructure. Continuous temperature measurements were made during solidification at different positions along the length of the casting and these temperature data were used to determine solidification thermal parameters, including the growth rate(VL) and the cooling rate(TR). High cooling rate cells and dendrites are shown to characterize the microstructure in different regions of the casting, with a reverse dendrite-to-cell transition occurring for TR5.0 K/s. Cellular(λc) and primary dendrite arm spacings(λ1) are determined along the length of the directionally-solidified casting. Experimental growth laws relating λc and λ1 to VL and TR are proposed, and a comparative analysis with results from a vertical upward directional solidification experiment is carried out. The influence of morphology and length scale of the microstructure on microhardness is also analyzed.展开更多
基金Projects(50771013,50871127)supported by the National Natural Science Foundation of China
文摘The effects of heat treatments on typical microstructures of directionally solidified(DS) Ti-45Al-8Nb-(W,B,Y)(molar fraction,%) alloys prepared by the Bridgeman method were studied.Two typical DS microstructures including full lamellae with cellular growth morphology and massive structure with dendritic growth morphology were examined.The results show that the heat treatment of 1250 ℃ for 24 h + 900 ℃ for 30 min+air cooling can efficiently eliminate the B2 phase in the DS alloys and change the massive structure of the rapid DS alloy into lamellar microstructure.Columnar lamellar colonies with widths of 150-200 μm and 50-100 μm respectively were observed in intercellular and dendritic arm regions.The heat treatment of 1 400 ℃ for 12 h+900 ℃ for 30 min+air cooling could simultaneously remove the B2 phase,massive structure and solidification segregations from the DS alloys,however,it caused severe growth of grains.
基金Project(2011CB605500) supported by the National Basic Research Program of ChinaProject(FRF-MP-10-005B) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(50674037) supported by the National Natural Science Foundation of China
文摘A TiAl alloy from pulverized rapidly solidified ribbons with the composition of Ti-46Al-2Cr-4Nb-0.3Y(mole fraction,%) was processed by spark plasma sintering(SPS).The effects of sintering temperature on the microstructure and mechanical properties were studied.The results show that the microstructure and phase constitution vary with sintering temperature.Sintering the milled powders at 1200 ℃ produces fully dense compact.Higher sintering temperature does not improve the densification evidently.The dominant phases are γ and α2 in the bulk alloys sintered at 1200 ℃.With higher sintering temperature,the fraction of α2 phase decreases and the microstructure changes from equiaxed near γ grain to near lamellar structure,together with a slight coarsening.The bulk alloy sintered at 1260 ℃ with refined and homogeneous near lamellar structure reveals the best overall mechanical properties.The compressional fracture stress and compression ratio are 2984 MPa and 41.5%,respectively,at room temperature.The tensile fracture stress and ductility are 527.5 MPa and 5.9%,respectively,at 800 ℃.
基金Project(JPPT-125-GJGG-14-016)supported by Military Supporting Projects of National Defense Science and Technology Industry Committee,China
文摘Effect of pre-annealing treatment temperature on compactibility of gas-atomized Al-27%Si alloy powders was investigated. Microstructure and hardness of the annealed powders were characterized. Pre-annealing results in decreasing Al matrix hardness, dissolving of needle-like eutectic Si phase, precipitation and growth of supersaturated Si atoms, and spheroidisation of primary Si phase. Compactibility of the alloy powders is gradually improved with increasing the annealing temperature to 400 ℃. However, it decreases when the temperature is above 400 ℃ owing to the existence of Si-Si phase clusters and the densely distributed Si particles. A maximum relative density of 96.1% is obtained after annealing at 400 ℃ for 4 h. In addition, the deviation of compactibility among the pre-annealed powders reaches a maximum at a pressure of 175 MPa. Therefore, a proper pre-annealing treatment can significantly enhance the cold compactibility of gas-atomized Al-Si alloy powders.
基金Projects (51021063,51301208) supported by the National Natural Science Foundation of ChinaProject (GZ755) supported by Sino-German Center for Promotion of Science+1 种基金Project (2011CB610401) supported by the National Basic Research Program of ChinaProject supported by Shenghua Scholar Program of Central South University,China
文摘(The effect of liquid diffusion coefficients on the microstructure evolution during solidification of primary (Al) phase in Al356.1 alloy was investigated by means of the phase-field simulation using two sets of diffusion coefficients in liquid phase, while fixing other thermophysical and numerical parameters. The first set is only with impurity coefficients of liquid phase in Arrhenius formula representing only the temperature dependence. While the second set is with the well-established atomic mobility database representing both temperature and concentration dependence. For the second set of liquid diffusion coefficients, the effect of non-diagonal diffusion coefficients on the microstructure evolution in Al356.1 alloy during solidification was also analyzed. The differences were observed in the morphology, tip velocity and composition profile ahead of the tip of the dendrite due to the three cases of liquid diffusivities. The simulation results indicate that accurate databases of mobilities in the liquid phase are highly needed for the quantitative simulation of microstructural evolution during solidification.
基金Project(SKLSP201118)supported by the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,ChinaProjects(51431008,51461032)supported by the National Natural Science Foundation of China+1 种基金Project(51125002)supported by the China National Natural Science Foundation for Distinguished Young ScholarsProject(GJJ14504)supported by the Education Department of Jiangxi Province,China
文摘Rapid solidification of Cu-Co immiscible alloy was investigated by glass-fluxing, spray casting and melt-spinning techniques. Both the transition from dendrite to dispersive structure and corresponding scale evolution were revealed and further elucidated in terms of the heat flow mode, nucleation and growth processes under different solidification conditions. With the increase of undercooling, columnar dendrite is replaced by dispersive structure due to the immiscible effect. In contrast, equiaxed dendrite forms in spray cast alloy due to multiple nucleation events and becomes thinner for the case of higher cooling rate. Ascribed to the enhanced non-equilibrium effect and insufficient period for collision and coagulation processes between separated droplets, fine globular dispersion appears upon the diameter of spray casting reaching 4 mm. As for the melt-spun ribbon with the highest cooling rate, a single-phase solid solution microstructure with refined grain of cellular morphology can be obtained, which is attributed to the suppression of liquid phase separation by instant solidification.
基金Projects(51227001,51420105005)supported by the National Natural Science Foundation of ChinaProject(138-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure and room temperature mechanical properties under the controlled solidification conditions. The specimens were solidified under steady state conditions with different temperature gradients (G=20, 25 and 30 K/mm) in a wide range of growth rates (v=10-200 μm/s) by using a Bridgman-type directional solidification furnace with liquid metal cooling (LMC) technology. The cellular microstructures are observed. The cellular spacing 2 decreases with increasing v for constant G or with increasing G for constant v. By using a linear regression analysis the relationships can be expressed as 2=136.216v^-0.2440 (G=30 K/mm) and 2=626.5630G^-0.5625 (v=10 μm/s), which are in a good agreement with Trivedi model. An improved tensile strength and a corresponding decreased elongation are achieved in the directionally solidified experimental alloy with increasing growth rate and tempertaure gradient. Furthermore, the directionally solidified experimental alloy exhibits higher room temperature tensile strength than the non-directionally solidified alloy.
基金Project(GJHZ20190822095418365)supported by Shenzhen International Cooperation Research,ChinaProject(2019011)supported by NTUT-SZU Joint Research Program,China+2 种基金Project(2019040)supported by Natural Science Foundation of Shenzhen University,ChinaProject(JCYJ20190808144009478)supported by Shenzhen Fundamental Research Fund,ChinaProject(ZDYBH201900000008)supported by Shenzhen Bureau of Industry and Information Technology,China。
文摘Selective laser melting(SLM)is an emerging layer-wise additive manufacturing technique that can generate complex components with high performance.Particulate-reinforced aluminum matrix composites(PAMCs)are important materials for various applications due to the combined properties of Al matrix and reinforcements.Considering the advantages of SLM technology and PAMCs,the novel SLM PAMCs have been developed and researched in recent years.Therefore,the current research progress about the SLM PAMCs is reviewed.Firstly,special attention is paid to the solidification behavior of SLM PAMCs.Secondly,the important issues about the design and fabrication of high-performance SLM PAMCs,including the selection of reinforcement,the influence of parameters on the processing and microstructure,the defect evolution and phase control,are highlighted and discussed comprehensively.Thirdly,the performance and strengthening mechanism of SLM PAMCs are systematically figured out.Finally,future directions are pointed out on the advancement of high-performance SLM PAMCs.
文摘The transient liquid phase(TLP)bonding of CoCuFeMnNi high entropy alloy(HEA)was studied.The TLP bonding was performed using AWS BNi-2 interlayer at 1050℃ with the TLP bonding time of 20,60,180 and 240 min.The effect of bonding time on the joint microstructure was characterized by SEM and EDS.Microstructural results confirmed that complete isothermal solidification occurred approximately at 240 min of bonding time.For samples bonded at 20,60 and 180 min,athermal solidification zone was formed in the bonding area which included Cr-rich boride and Mn3Si intermetallic compound.For all samples,theγsolid solution was formed in the isothermal solidification zone of the bonding zone.To evaluate the effect of TLP bonding time on mechanical properties of joints,the shear strength and micro-hardness of joints were measured.The results indicated a decrement of micro-hardness in the bonding zone and an increment of micro-hardness in the adjacent zone of joints.The minimum and maximum values of shear strength were 100 and 180 MPa for joints with the bonding time of 20 and 240 min,respectively.
文摘The effects of joining temperature(TJ)and time(tJ)on microstructure of the transient liquid phase(TLP)bonding of GTD-111 superalloy were investigated.The bonding process was applied using BNi-3 filler at temperatures of 1080,1120,and 1160℃ for isothermal solidification time of 195,135,and 90 min,respectively.Homogenization heat treatment was also applied to all of the joints.The results show that intermetallic and eutectic compounds such as Ni-rich borides,Ni−B−Si ternary compound and eutectic-γcontinuously are formed in the joint region during cooling.By increasing tJ,intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well.With the increase of the holding time at all of the three bonding temperatures,the thickness of the athermally solidified zone(ASZ)and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone(DAZ)increases.Similar results are also obtained by increasing TJ from 1080 to 1160℃ at tJ=90 min.Furthermore,increasing the TJ from 1080 to 1160℃ leads to the faster elimination of intermetallic phases from the ASZ.However,these phases are again observed in the joint region at 1180℃.It is observed that by increasing the bonding temperature,the bonding width and the rate of dissolution of the base metal increase.Based on these results,increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.
基金Project (16ZB0301) supported by the Research Program of Sichuan Provincial Education Department,China
文摘The effects of solidification rate and excessive Fe on phase formation and magnetocaloric properties of LaFe11.6xSi1.4(x=1.1,1.2)were investigated by XRD,SEM and VSM measurements.The XRD results show that the amount of LaFeSi phase in the as-cast melt-spun ribbons prepared by a copper wheel at a speed of10m/s is less than that in the as-cast arc melting buttons with the same x values.The annealed melt-spun ribbons contain smaller amount of La(Fe,Si)13(1:13)phase than the corresponding annealed arc melting buttons.Although the melt-spun sample has finer crystalline grains ofα-Fe,as indicated by SEM analysis,its crystalline size has not reached nano-scale.Therefore,the magnetic exchange-coupling between1:13phase andα-Fe phase has not been observed in melt-spun ribbons.Further,the maximum negative magnetic entropy change(?SMax)and relative cooling power(RCP)of annealed melt-spun ribbons under a field change of0?2T are weaker than those of the corresponding annealed arc melting buttons.
基金The authors are grateful for the financial supports from the Ministry of Science and Technology of China(No.2017YFB0305701).
文摘Cu−0.15Zr(wt.%)alloy with uniform and fine microstructure was fabricated by rapid solidification followed by hot forging.Evolution of microstructure,mechanical properties and electrical conductivity of the alloy during elevated-temperature annealing were investigated.The alloy exhibits good thermal stability,and its strength decreases slightly even after annealing at 700℃ for 2 h.The nano-sized Cu_(5)Zr precipitates show significant pinning effect on dislocation moving,which is the main reason for the high strength of the alloy.Additionally,the large-size Cu_(5)Zr precipitates play a major role in retarding grain growth by pinning the grain boundaries during annealing.After annealing at 700℃ for 2 h,the electrical conductivity of samples reaches the peak value of 88%(IACS),which is attributed to the decrease of vacancy defects,dislocations,grain boundaries and Zr solutes.
基金Projects(51671152,51304153,51504191,51874225)supported by the National Natural Science Foundation of ChinaProject(14JK512)supported by the Natural Science Foundation of Shaanxi Educational Committee,China+1 种基金Project(18JC019)supported by Shaanxi Provincial Department of Education Industrialization Project,ChinaProject(14JK1512)supported by Shaanxi Provincial Department of Education Natural Science Special Project,China
文摘Selective laser melting(SLM)technology is the prevailing method of manufacturing components with complex geometries.However,the cost of the additive manufacturing(AM)fine powder is relatively high,which significantly limits the development of the SLM.In this study,the 316L fine powder and coarse powder with a mass ratio of 80:20,70:30 and 60:40 were mixed using a ball milling and the samples with a relative density greater than 97%were prepared by SLM.The results show that the intricate temperature gradients and surface tension gradients in SLM will produce Marangoni flow,forming a typical molten pool morphology,cellular and strip subgrain structures.And as the proportion of coarse powder increases,the scanning track morphology changes from smooth to undulating;the morphology of the molten pool and subgrain structure are weakened.Meanwhile,the unmelted particles appear on the surface of the SLM sample.On the premise of an introducing appropriate amount of large particle size powder(20%),the SLM samples still have good mechanical properties(662 MPa,47%).
基金This research was supported financially by the Scientific and Technical Research Council of Turkey(TUBİTAK)under Contract No.112T588The author is grateful to the Scientific and Technical Research Council of Turkey(TUBİTAK)for its financial support。
文摘In the production of AlCuFe alloy for a special application,the growth rate was changed and the results were evaluated.Changes in the eutectic spacing(microstructure)of a material due to the growth rate are known to affect its mechanical,electrical and thermal properties.To evaluate its microstructure,the eutectic composition of Al−32.5wt.%Cu−0.5wt.%Fe was prepared and directional solidification experiments were conducted using a Bridgman-type furnace at a constant temperature gradient(G=8.50 K/mm)and five growth rates(V=8.25,16.60,41.65,90.05,164.80μm/s).The effect of the growth rate on the eutectic spacing was then determined,and the resulting microhardness and ultimate tensile strength were obtained based on the change in the microstructure by regression analysis and Hall−Petch correlations.Despite the fact that the growth rate increased by approximately twenty times,the eutectic spacing decreased by a factor of approximately 5,and these changes in the growth rate and microstructure caused the mechanical properties to change by a factor of approximately 1.5.
基金Projects(51504153,51571145) supported by the National Natural Science Foundation of ChinaProject(L2015397) supported by the General Project of Scientific Research of the Education Department of Liaoning Province,China
文摘Thermal analysis was used to investigate the microstructural evolution of Mg-7 Zn-x Cu-0.6 Zr alloys during solidification. The effect of Cu content(0, 1, 2 and 3, mass fraction, %) on the hot tearing behavior of the Mg-7 Zn-x Cu-0.6 Zr alloys was investigated with a constrained rod casting(CRC) apparatus, equipped with a load sensor and a data acquisition system. The thermal analysis results of Mg-7 Zn-x Cu-0.6 Zr alloy revealed that the alloy consisted of two distinct phases: α-Mg and Mg Zn2. Three distinct peaks were observed in the alloys with Cu addition, which were identified as α-Mg, Mg Zn Cu and Mg Zn2. In addition, the reaction temperature of α-Mg decreased and the reaction temperatures of Mg Zn2 and Mg Zn Cu increased as the Cu content increased. The experimental results of hot tearing demonstrated that the addition of Cu significantly reduced the hot tearing susceptibility(HTS) of Mg-7 Zn-x Cu-0.6 Zr alloys due to the higher eutectic temperature and the shorter solidification temperature region.
基金the financial support provided by IFPA, Federal Institute of Education, Science and Technology of Para, FAPESP-Sao Paulo Research Foundation,Brazil (grants 2016/18186-1 and 2017/15158-0)CNPq,The Brazilian Research Council (grants 301600/2015-5 472745/2013-1 and 308784/2014-6)
文摘Horizontal directional solidification experiments were carried out with a monophasic Sn-2%Sb(mass fraction) alloy to analyze the influence of solidification thermal parameters on the morphology and length scale of the microstructure. Continuous temperature measurements were made during solidification at different positions along the length of the casting and these temperature data were used to determine solidification thermal parameters, including the growth rate(VL) and the cooling rate(TR). High cooling rate cells and dendrites are shown to characterize the microstructure in different regions of the casting, with a reverse dendrite-to-cell transition occurring for TR5.0 K/s. Cellular(λc) and primary dendrite arm spacings(λ1) are determined along the length of the directionally-solidified casting. Experimental growth laws relating λc and λ1 to VL and TR are proposed, and a comparative analysis with results from a vertical upward directional solidification experiment is carried out. The influence of morphology and length scale of the microstructure on microhardness is also analyzed.