In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is est...In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.展开更多
To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based ...To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based on the product distribution from a tubular reactor. The promoting effect of chloralkane addition was mainly caused by the chloralkane radicals generated by the dissociation of C–Cl bond. The promoting effect of the chloromethane with more chlorine atoms was better than those with less chlorine atoms. Intermediates detected from the reactions with isoprene and bromobenzene demonstrated that both trichlorosilyl radical and dichlorosilylene existed in the reaction system in the presence of chloralkanes. A detailed reaction scheme was proposed.展开更多
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introd...As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.展开更多
Methylphenyldichlorosilane(MPDS, CH3C6H5 SiC l2) is an important silicone monomer for the synthesis of highperformance polymethylphenylsiloxane polymers. In this work, the mechanism of the synthesis of MPDS from methy...Methylphenyldichlorosilane(MPDS, CH3C6H5 SiC l2) is an important silicone monomer for the synthesis of highperformance polymethylphenylsiloxane polymers. In this work, the mechanism of the synthesis of MPDS from methyldichlorosilane and chlorobenzene by gas phase condensation was studied, and a kinetic model with 35 species and 58 elementary reactions was established. Experiments were carried out in a tubular reactor under a wide range of reaction conditions. The calculated mole fractions of the reactants and products were in a good agreement with the experimental results. A mechanism of the insertion of chloromethylsilylene into the C\Cl bond of chlorobenzene was proposed, which was proved to be the main pathway of MPDS production. The established kinetic model can be used in design and optimization of the industrial reactor for MPDS synthesis.展开更多
Municipal solid wastes from industrial plants were pyrolyzed in a fixed bed reactor to evaluate the influence of paper/plastic ratio and reaction time both on product quantity and quality. Raw materials have been pyro...Municipal solid wastes from industrial plants were pyrolyzed in a fixed bed reactor to evaluate the influence of paper/plastic ratio and reaction time both on product quantity and quality. Raw materials have been pyrolyzed under nitrogen in a 3.0 dm^3 autoclave. Results show considerable differences in yields and quality of products obtained by pyrolysis of wastes with different paper content. Light and heavy oils were mixtures of organic compounds containing valuable hydrocarbons and oxygenated chemicals, while chars were rather composed of inorganic compounds from the raw materials. Longer reaction time of pyrolysis had produced higher non-condensable gas, water and light oil. Gases contained CO, CO2 and hydrocarbons, but the concentrations were very function of reaction time and paper/plastic ratio. Light and heavy oils showed similarities with middle distillates and heavy oils in refinery, the high paper content of the raw materials was unfavourable for longer storage of waste derived oils.展开更多
This paper is concerned with the forced convective heat transfer of dilute liquid suspensions of nanoparticles (nanofluids) flowing through a straight pipe under laminar conditions. Stable nanofluids are formulated ...This paper is concerned with the forced convective heat transfer of dilute liquid suspensions of nanoparticles (nanofluids) flowing through a straight pipe under laminar conditions. Stable nanofluids are formulated by using the high shear mixing and ultrasonication methods. They are then characterised for their size, surface charge,thermal and rheological properties and tested for their convective heat transfer behaviour. Mathematical modelling is performed to simulate the convective heat transfer of nanofluids using a single phase flow model and considering nanofluids as both Newtonian and non-Newtonian fluid. Both experiments and mathematical modelling show that nanofluids can substantially enhance the convective heat transfer. Analyses of the results suggest that the non-Newtonian character of nanofluids influences the overall enhancement, especially for nanofluids with an obvious non-Newtonian character.展开更多
Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorat...Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorated thermo-flow performances of a condenser cell. It is of benefit to the design and operation optimization of the direct dry cooling system in a power plant to investigate the thermo-flow characteristics of the condenser cell and propose the flow leading measures of cooling air. On the basis of the representative configuration of the air-cooled condenser cell in a 600 MW direct dry cooling power plant, the computa- tional models of the air side fluid and heat flows are built, in which the actual fan blade geometric details are considered. Various flow field leading ways of cooling air are presented and the thermo-flow characteristics in the A-frame condenser cell and through the finned tube bundles are compared. Results show that the flow field leading measures can result in the increased volumetric flow rate and heat rejection, thus bringing on the improved performance of the condenser cell. The improvement of thermo-flow oerformances depends upon the geometric details of the flow guiding device.展开更多
Conversion of waste biomass to valuable carbonaceous material is a sustainable and environmental benign method for energy and reduction of greenhouse gas emission. Herein, a two-step hydrothermal method was developed ...Conversion of waste biomass to valuable carbonaceous material is a sustainable and environmental benign method for energy and reduction of greenhouse gas emission. Herein, a two-step hydrothermal method was developed to fabricate high performance electrode material from pomelo peels. In the first step, the pomelo peels were transformed to carbonaceous aerogel (CA), which constructed of three- dimensional, sponge-like brown monolith with hierarchical pores, low-density (0.032 g]cm3) and excel- lent mechanical flexibility. Then, the cobalt nickel aluminum layered double hydroxide (CoNiAI-LDH) was in situ loaded on the surface of CA to form exquisite core-shell structure (CoNiAI-LDH@CA) through the second hydrothermal step. When used as an electrode material for supercapacitor, CoNiA1-LDHOCA exhibited high specific capacitances of 1,134F/g at 1A/g and 902Fig at 10A/g, respectively. Furthermore, they displayed an excellent cycling stability without an obvious capacitance decrease after 4,000 cycles.展开更多
The energy crisis and environmental pollution are serious challenges that humanity will face for the long-term. Despite tremendous efforts, the development of environmentally friendly methods to fabricate new energy m...The energy crisis and environmental pollution are serious challenges that humanity will face for the long-term. Despite tremendous efforts, the development of environmentally friendly methods to fabricate new energy materials is still challenging. Here we report, for the first time, a new strategy to fabricate various doped carbon nanofiber (CNF) aerogels by pyrolysis of bacterial cellulose (BC) pellicles which had adsorbed or were dyed with different toxic organic dyes. The proposed strategy makes it possible to remove the toxic dyes from waste-water and then synthesize doped CNF aerogels using the dyed BC pellicles as precursors. Compared with other reported processes for preparing heteroatom doped carbon (HDC) nanomaterials, the present synthetic method has some significant advantages, such as being green, general, low-cost and easily scalable. Moreover, the as-prepared doped CNF aerogels exhibit great potential as electrocatalysts for the oxygen reduction reaction (ORR) and as electrode materials for supercapacitors.展开更多
文摘In order to increase cooling or heating efficiency,a porous computational fluid dynamics(CFD)model is employed to predict the thermo-fluid status and optimize the placement of outdoor units.A full scale model is established to validate the accuracy of CFD simulation in terms of velocity and temperature distributions.The comparison between the measurement and the simulation shows a good agreement.By evaluating the condensers' sucked air temperature with CFD for three units installed in a row,it is found that the minimum separation distance among neighboring units is 0.2 m;a vertical wall should be apart from the unit line by at least 0.8 m;and large different operating pressures among units do not impact the flow rate and the heat transfer of the other units meaningfully.
文摘To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based on the product distribution from a tubular reactor. The promoting effect of chloralkane addition was mainly caused by the chloralkane radicals generated by the dissociation of C–Cl bond. The promoting effect of the chloromethane with more chlorine atoms was better than those with less chlorine atoms. Intermediates detected from the reactions with isoprene and bromobenzene demonstrated that both trichlorosilyl radical and dichlorosilylene existed in the reaction system in the presence of chloralkanes. A detailed reaction scheme was proposed.
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
文摘As the performance of an air-cooled condenser is apt to be affected by the fluctuating ambient condition, some difficulties are brought to the use of a steam feeding water pump in an air-cooled unit. This paper introduces a new design of for steam feeding the water pump of an air-cooled unit using the back-pressure steam turbine as the prime motor. Using variable condition analysis on a 600 MW direct air-cooled unit, and with consideration of the effect on the ambient conditions, the feasibility, economy, and adaptability of the design are verified.
文摘Methylphenyldichlorosilane(MPDS, CH3C6H5 SiC l2) is an important silicone monomer for the synthesis of highperformance polymethylphenylsiloxane polymers. In this work, the mechanism of the synthesis of MPDS from methyldichlorosilane and chlorobenzene by gas phase condensation was studied, and a kinetic model with 35 species and 58 elementary reactions was established. Experiments were carried out in a tubular reactor under a wide range of reaction conditions. The calculated mole fractions of the reactants and products were in a good agreement with the experimental results. A mechanism of the insertion of chloromethylsilylene into the C\Cl bond of chlorobenzene was proposed, which was proved to be the main pathway of MPDS production. The established kinetic model can be used in design and optimization of the industrial reactor for MPDS synthesis.
文摘Municipal solid wastes from industrial plants were pyrolyzed in a fixed bed reactor to evaluate the influence of paper/plastic ratio and reaction time both on product quantity and quality. Raw materials have been pyrolyzed under nitrogen in a 3.0 dm^3 autoclave. Results show considerable differences in yields and quality of products obtained by pyrolysis of wastes with different paper content. Light and heavy oils were mixtures of organic compounds containing valuable hydrocarbons and oxygenated chemicals, while chars were rather composed of inorganic compounds from the raw materials. Longer reaction time of pyrolysis had produced higher non-condensable gas, water and light oil. Gases contained CO, CO2 and hydrocarbons, but the concentrations were very function of reaction time and paper/plastic ratio. Light and heavy oils showed similarities with middle distillates and heavy oils in refinery, the high paper content of the raw materials was unfavourable for longer storage of waste derived oils.
基金supported by Chinese Heilongjiang Postdoctoral FoundationChinese Heilongjiang Postdoctoral Science Funding No.LBH-Q07036+1 种基金the Science Creative Foundation for Distinguished Young Scholars in Harbin (Grant No. 2008RFLG005)Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology No.HIT.NSRIF. 2008.43.
文摘This paper is concerned with the forced convective heat transfer of dilute liquid suspensions of nanoparticles (nanofluids) flowing through a straight pipe under laminar conditions. Stable nanofluids are formulated by using the high shear mixing and ultrasonication methods. They are then characterised for their size, surface charge,thermal and rheological properties and tested for their convective heat transfer behaviour. Mathematical modelling is performed to simulate the convective heat transfer of nanofluids using a single phase flow model and considering nanofluids as both Newtonian and non-Newtonian fluid. Both experiments and mathematical modelling show that nanofluids can substantially enhance the convective heat transfer. Analyses of the results suggest that the non-Newtonian character of nanofluids influences the overall enhancement, especially for nanofluids with an obvious non-Newtonian character.
基金supported by the National Basic Research Program of China (973 Program)(Grant No.2009CB219804)the National Scientific and Technical Supporting Program of China(Grant No.2011BAA04B02)
文摘Special A-frame geometry of the air-cooled condenser cell and the complicated flow field at the exit of the axial flow fan bring on the air mal-distribution on the surface of the finned tube bundles and the deteriorated thermo-flow performances of a condenser cell. It is of benefit to the design and operation optimization of the direct dry cooling system in a power plant to investigate the thermo-flow characteristics of the condenser cell and propose the flow leading measures of cooling air. On the basis of the representative configuration of the air-cooled condenser cell in a 600 MW direct dry cooling power plant, the computa- tional models of the air side fluid and heat flows are built, in which the actual fan blade geometric details are considered. Various flow field leading ways of cooling air are presented and the thermo-flow characteristics in the A-frame condenser cell and through the finned tube bundles are compared. Results show that the flow field leading measures can result in the increased volumetric flow rate and heat rejection, thus bringing on the improved performance of the condenser cell. The improvement of thermo-flow oerformances depends upon the geometric details of the flow guiding device.
基金supported by the National Natural Science Foundation of China(21333009,21273244,21573245)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2017049)
文摘Conversion of waste biomass to valuable carbonaceous material is a sustainable and environmental benign method for energy and reduction of greenhouse gas emission. Herein, a two-step hydrothermal method was developed to fabricate high performance electrode material from pomelo peels. In the first step, the pomelo peels were transformed to carbonaceous aerogel (CA), which constructed of three- dimensional, sponge-like brown monolith with hierarchical pores, low-density (0.032 g]cm3) and excel- lent mechanical flexibility. Then, the cobalt nickel aluminum layered double hydroxide (CoNiAI-LDH) was in situ loaded on the surface of CA to form exquisite core-shell structure (CoNiAI-LDH@CA) through the second hydrothermal step. When used as an electrode material for supercapacitor, CoNiA1-LDHOCA exhibited high specific capacitances of 1,134F/g at 1A/g and 902Fig at 10A/g, respectively. Furthermore, they displayed an excellent cycling stability without an obvious capacitance decrease after 4,000 cycles.
基金This work is supported by the Ministry of Science and Technology of China (Grants 2010CB934700, 2013CB933900, 2014CB931800), the National Natural Science Foundation of China (Grants 21431006, 91022032, 91227103, 21061160492, J1030412), the Chinese Academy of Sciences (Grant KJZD-EW- M01-1), and Hainan Province Science and Technology Department (CXY20130046) for financial support. We thank Ms. C. Y. Zhong for kindly providing purified bacterial cellulose pellicles.
文摘The energy crisis and environmental pollution are serious challenges that humanity will face for the long-term. Despite tremendous efforts, the development of environmentally friendly methods to fabricate new energy materials is still challenging. Here we report, for the first time, a new strategy to fabricate various doped carbon nanofiber (CNF) aerogels by pyrolysis of bacterial cellulose (BC) pellicles which had adsorbed or were dyed with different toxic organic dyes. The proposed strategy makes it possible to remove the toxic dyes from waste-water and then synthesize doped CNF aerogels using the dyed BC pellicles as precursors. Compared with other reported processes for preparing heteroatom doped carbon (HDC) nanomaterials, the present synthetic method has some significant advantages, such as being green, general, low-cost and easily scalable. Moreover, the as-prepared doped CNF aerogels exhibit great potential as electrocatalysts for the oxygen reduction reaction (ORR) and as electrode materials for supercapacitors.