In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water whe...Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.展开更多
Temperature-sensitive hydrogel—poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspens...Temperature-sensitive hydrogel—poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspension polymerization respectively. The swelling kinetics of the gels was also studied. With these prepared PNIPA gels, the model protein lysozyme was renatured. Within 24h, PNIPA gel disks improved the yield of lysozyme activity by 49.3% from 3375.2U·mg^-1 to 5038.8U·mg^-1. With the addition of faster response PNIPA gel beads, the total lysozyme activity recovery was about 68.98% in 3h, as compared with 42.03% by simple batch dilution. The novel refolding system with PNIPA enables efficient refolding especially at high protein concentrations. Discussion about the mechanism revealed that when PNIPA gels were added into the refolding buffer, the hydrophobic interactions between denatured proteins and polymer gels could prevent the aggregation of refolding intermediates, thus enhanced the protein renaturation.展开更多
To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differ...To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differed in degradation poly(N-isopropylacrylamide)(PNIPAAm) and methylcellulose(MC),respectively.We tested the injectablility,enzymatic biodegradability,temperature-sensitivity,structure cytotoxicity and hemolysis of the two injectable hydrogels.Our research has successfully obtained the preparation condition of XLHA-PNIPAAm injectable hydrogel,and verified that adding non-degradable material PNIPAAm can postpone the degradation of HA more effectively than degradable material MC.PNIPAAm prepared with 5 kGy dose radiation,MBAAm/NIPAAm(M/M)=0.015,monomer concentration=3% produced XLHA-PNIPAAm with slowest enzymatic biodegradability.DSC results showed that temperature-sensitivity of the XLHA-PNIPAAm was more stable than that of XLHA-MC.Two composite hydrogels were qualified in cytotoxicity and hemolysis tests and the biocompatibility of XLHA-PNIPAAm hydrogel showed better than XLHA-MC hydrogel.展开更多
The plasma polymerization method and dynamic ion-beam mixed implantation method were employed to coat ultra-thin polymer films on copper plates. Experiments indicated that steady dropwise condensation of steam at atmo...The plasma polymerization method and dynamic ion-beam mixed implantation method were employed to coat ultra-thin polymer films on copper plates. Experiments indicated that steady dropwise condensation of steam at atmospheric pressure occurred. The condensation heat transfer coefficients increased by approximately 3 and 5-7 times for the polytrimethylvinylsilane film and polytetrafluoroethylene film respectively, compared with the value for film condensation under the same experimental conditions. The temperatures on the condensing surface and inside the test block were found to be rapidly and randomly fluctuated. The properties of the coated films and advantages of the methods used in this investigation were discussed briefly.展开更多
A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis...A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis) was used as the crosslinker. The effects of monomer content, pH and temperature on swelling ratio of the hydrogel were investigated; the thermo-sensitivity in deionized water and in physiological saline was determined. It showed that the swelling ratio of the hydrogel could be changed by changing the temperature or pH alternately. Both swelling ratio and LCST (Lower Critical Solution Temperature) of the hydrogel decreased with the increase of NIPAAm in the co-polymer content.展开更多
Nowadays, technologies in construction field have offered several kinds of chemical admixtures, which offer different behaviors at the fresh state of the batch and by consequence, it is resulted with different mechani...Nowadays, technologies in construction field have offered several kinds of chemical admixtures, which offer different behaviors at the fresh state of the batch and by consequence, it is resulted with different mechanical behaviors at the solid state of the mix. This study focused on the behavior of a new kind of admixture at fresh and solid states. Currently, the concrete material has become a very expensive material because the high price mostly of aggregates, representing the three quarters of the concrete components. By consequence, it costs money and on the other hand, it produces a lot of wastes. The main aspect which guides this study is to make a kind of concrete based mainly on local material and sustainable concrete material (SCM or waste material), which is one very abundant material in quality and quantity, under the current tendency the results obtained in this study summarize up the importance of the temperature during the development of the mechanical characteristics of mortar, mainly on compressive strength at age of 28 days. This is in the case of the addition of limestone crushed additive by percentage of substitution.展开更多
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
基金Supported by Major State Basic Research Development Program of China ("973" Program, No. 2009CB219907)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0936)
文摘Theoretical and experimental analysis of a new refrigerant mixture BY-3 was conducted based on a single-stage vapor compression refrigeration system. The water-water heat pump system used BY-3 to produce hot water when the low temperature was 20 ℃. The following results were obtained: the highest temperature at the condenser outlet reached about 85 ℃; when the difference between the water temperatures at the condenser outlet and the evaporator inlet was less than 40 ℃, the coefficient of performance (COP) was larger than 4; when the difference reached 55 ℃, the COP still kept 3; the discharge temperature of BY-3 was lower than 100 ℃, and the refrigerant vapor pressure kept lower than 1.8 MPa. When the water temperature at the condenser outlet reached over 85 ℃, nearly a 5 ℃ superheating temperature was maintained.
基金the National Natural Science Foundation of China (No. 20276065).
文摘Temperature-sensitive hydrogel—poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspension polymerization respectively. The swelling kinetics of the gels was also studied. With these prepared PNIPA gels, the model protein lysozyme was renatured. Within 24h, PNIPA gel disks improved the yield of lysozyme activity by 49.3% from 3375.2U·mg^-1 to 5038.8U·mg^-1. With the addition of faster response PNIPA gel beads, the total lysozyme activity recovery was about 68.98% in 3h, as compared with 42.03% by simple batch dilution. The novel refolding system with PNIPA enables efficient refolding especially at high protein concentrations. Discussion about the mechanism revealed that when PNIPA gels were added into the refolding buffer, the hydrophobic interactions between denatured proteins and polymer gels could prevent the aggregation of refolding intermediates, thus enhanced the protein renaturation.
基金The Nattional Key Scientific Program-Nanoscience and Nanotechnologygrant number:2009CB930000
文摘To get a sort of new scaffold material for soft tissue reconstruction,we have prepared XLHA-PNIPAAm and XLHA-MC injectable hydrogels through blending crosslinked HA(XLHA) and two temperature-sensitive materials differed in degradation poly(N-isopropylacrylamide)(PNIPAAm) and methylcellulose(MC),respectively.We tested the injectablility,enzymatic biodegradability,temperature-sensitivity,structure cytotoxicity and hemolysis of the two injectable hydrogels.Our research has successfully obtained the preparation condition of XLHA-PNIPAAm injectable hydrogel,and verified that adding non-degradable material PNIPAAm can postpone the degradation of HA more effectively than degradable material MC.PNIPAAm prepared with 5 kGy dose radiation,MBAAm/NIPAAm(M/M)=0.015,monomer concentration=3% produced XLHA-PNIPAAm with slowest enzymatic biodegradability.DSC results showed that temperature-sensitivity of the XLHA-PNIPAAm was more stable than that of XLHA-MC.Two composite hydrogels were qualified in cytotoxicity and hemolysis tests and the biocompatibility of XLHA-PNIPAAm hydrogel showed better than XLHA-MC hydrogel.
基金the National Natural Science Foundation of China (No. 59906002) and the Foundation for Young Teachers of Dalian University of Technology.
文摘The plasma polymerization method and dynamic ion-beam mixed implantation method were employed to coat ultra-thin polymer films on copper plates. Experiments indicated that steady dropwise condensation of steam at atmospheric pressure occurred. The condensation heat transfer coefficients increased by approximately 3 and 5-7 times for the polytrimethylvinylsilane film and polytetrafluoroethylene film respectively, compared with the value for film condensation under the same experimental conditions. The temperatures on the condensing surface and inside the test block were found to be rapidly and randomly fluctuated. The properties of the coated films and advantages of the methods used in this investigation were discussed briefly.
文摘A kind of novel copolymer hydrogel of poly(N, N-dimethylaminoethyl methacrylate-co-N-isopropylacrylamide) (poly[DMAEMA/NIPAAm]) was synthesized by the initiation of K2S2O8, N, N'-methylene-bis(acrylamide) (Bis) was used as the crosslinker. The effects of monomer content, pH and temperature on swelling ratio of the hydrogel were investigated; the thermo-sensitivity in deionized water and in physiological saline was determined. It showed that the swelling ratio of the hydrogel could be changed by changing the temperature or pH alternately. Both swelling ratio and LCST (Lower Critical Solution Temperature) of the hydrogel decreased with the increase of NIPAAm in the co-polymer content.
文摘Nowadays, technologies in construction field have offered several kinds of chemical admixtures, which offer different behaviors at the fresh state of the batch and by consequence, it is resulted with different mechanical behaviors at the solid state of the mix. This study focused on the behavior of a new kind of admixture at fresh and solid states. Currently, the concrete material has become a very expensive material because the high price mostly of aggregates, representing the three quarters of the concrete components. By consequence, it costs money and on the other hand, it produces a lot of wastes. The main aspect which guides this study is to make a kind of concrete based mainly on local material and sustainable concrete material (SCM or waste material), which is one very abundant material in quality and quantity, under the current tendency the results obtained in this study summarize up the importance of the temperature during the development of the mechanical characteristics of mortar, mainly on compressive strength at age of 28 days. This is in the case of the addition of limestone crushed additive by percentage of substitution.