期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非线性DEDS的周期时间配置与凝着色图 被引量:4
1
作者 陈文德 《控制与决策》 EI CSCD 北大核心 2003年第5期517-521,共5页
对于用极大极小函数描述的非线性离散事件动态系统(DEDS),提出一种凝着色图方法。用该方法证明了不同周期时间的数目等于凝点的数目。在此基础上给出了能用状态反馈(独立)配置周期时间的充要条件,解决了与传统线性控制系统极点配置问题... 对于用极大极小函数描述的非线性离散事件动态系统(DEDS),提出一种凝着色图方法。用该方法证明了不同周期时间的数目等于凝点的数目。在此基础上给出了能用状态反馈(独立)配置周期时间的充要条件,解决了与传统线性控制系统极点配置问题完全对应的问题。将该结果应用于线性DEDS,得到了配置域及缩短的周期时间。 展开更多
关键词 离散事件动态系统 非线性 凝着色图 极点配置
下载PDF
Graphs with vertex rainbow connection number two
2
作者 LU ZaiPing MA YingBin 《Science China Mathematics》 SCIE CSCD 2015年第8期1803-1810,共8页
An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors... An edge colored graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. A vertex colored graph G is vertex rainbow connected if any two vertices are connected by a path whose internal vertices have distinct colors. The vertex rainbow connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G vertex rainbow connected. In 2011, Kemnitz and Schiermeyer considered graphs with rc(G) = 2.We investigate graphs with rvc(G) = 2. First, we prove that rvc(G) 2 if |E(G)|≥n-22 + 2, and the bound is sharp. Denote by s(n, 2) the minimum number such that, for each graph G of order n, we have rvc(G) 2provided |E(G)|≥s(n, 2). It is proved that s(n, 2) = n-22 + 2. Next, we characterize the vertex rainbow connection numbers of graphs G with |V(G)| = n, diam(G)≥3 and clique number ω(G) = n- s for 1≤s≤4. 展开更多
关键词 vertex-coloring vertex rainbow connection number clique number
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部