Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited p...Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.展开更多
Acrylonitrile (AN) was copolymerized with N-isopropylacrylamide (NIPA) to synthesize thermosensitive hy-drogels, and the on-off switch behavior of poly(NIPA-co-AN) hydrogels with different fraction of hydrophobic comp...Acrylonitrile (AN) was copolymerized with N-isopropylacrylamide (NIPA) to synthesize thermosensitive hy-drogels, and the on-off switch behavior of poly(NIPA-co-AN) hydrogels with different fraction of hydrophobic compo-nent (AN) was investigated. It is found that the lower critical solution temperature (LCST), the swelling ratio at certain temperature and the reswelling rate of poly(NIPA-co-AN) hydrogels decreased as AN unit fraction in copolymers in-creased. In order to improve the responsive rate of poly(NIPA-co-AN) hydrogels, they were further treated by surface crosslinking using N, N′-methylene bisacrylamide (BIS) as a crosslinking agent. The swelling and deswelling behaviors of these copolymers were compared with those of the untreated hydrogels. The results indicated that the responsive rate of poly(NIPA-co-AN) hydrogel was improved by surface crosslinking. The resulting hydrogels bearing cyano groups with fast response have potential applications in the field of drug-controlled release and immobilization of biomolecules.展开更多
Polyvinyl alcohol(PVA) physiological saline gel was prepared using physiological saline solution of the polymer by freezing and thawing method. The influences of the concentration of PVA, freezing and thawing cycle ti...Polyvinyl alcohol(PVA) physiological saline gel was prepared using physiological saline solution of the polymer by freezing and thawing method. The influences of the concentration of PVA, freezing and thawing cycle times and solvent swelling media on the swelling properties of PVA saline gel were investigated. The result show that the electrolytical ions have great effect on the swelling behavior of PVA saline gel. The equilibrium swelling ratio of PVA saline gel in aqueous swelling media is larger than that in saline swelling media. Also, the equilibrium swelling ratios of PVA saline gel in aqueous and in saline media decrease with the increase of gel concentration and the increase of freezing and thawing cycle times. The decreasing speed of equilibrium swelling ratio with the increase of freezing and thawing cycle times of PVA gel in distilled water is faster than that in physiological saline. The swelling kinetic equation can sufficiently describe the swelling behavior of PVA physiological saline gel.展开更多
A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology o...A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology of hydrogels were examined by the infrared radiation and the scanning electron microscopy, respectively. The influences of the content of crosslinking agent and relative molecular mass of polyethylene glycol (PEG) on the swelling properties of hydrogels were discussed. The molecular mechanics simulations were performed to investigate the phase transformation mechanism of poly(N-isopropyl acrylamide) (PNIPA) hydrogel. The results show that macropores are observed in hydrogels, whereas hydrogels prepared without using PEG have a dense surface. LCST of hydrogels increases with the increase of relative molecular mass of PEG. The swelling mechanism of PNIPA porous hydrogels follows non-Fickian diffusion model. The theoretical maximum water absorption S∞ is approximately consistent with experimental value according to the second-order kinetics model established by Schott. The molecule chains of PNIPA hydrogel begin folding and curling, resulting in volume shrinkage at 305 K. There are much intramolecular nonbonding interactions in molecule chains of hydrogels. The porous hydrogels are expected to be applied in the field of artificial intelligence material.展开更多
文摘Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.
文摘Acrylonitrile (AN) was copolymerized with N-isopropylacrylamide (NIPA) to synthesize thermosensitive hy-drogels, and the on-off switch behavior of poly(NIPA-co-AN) hydrogels with different fraction of hydrophobic compo-nent (AN) was investigated. It is found that the lower critical solution temperature (LCST), the swelling ratio at certain temperature and the reswelling rate of poly(NIPA-co-AN) hydrogels decreased as AN unit fraction in copolymers in-creased. In order to improve the responsive rate of poly(NIPA-co-AN) hydrogels, they were further treated by surface crosslinking using N, N′-methylene bisacrylamide (BIS) as a crosslinking agent. The swelling and deswelling behaviors of these copolymers were compared with those of the untreated hydrogels. The results indicated that the responsive rate of poly(NIPA-co-AN) hydrogel was improved by surface crosslinking. The resulting hydrogels bearing cyano groups with fast response have potential applications in the field of drug-controlled release and immobilization of biomolecules.
文摘Polyvinyl alcohol(PVA) physiological saline gel was prepared using physiological saline solution of the polymer by freezing and thawing method. The influences of the concentration of PVA, freezing and thawing cycle times and solvent swelling media on the swelling properties of PVA saline gel were investigated. The result show that the electrolytical ions have great effect on the swelling behavior of PVA saline gel. The equilibrium swelling ratio of PVA saline gel in aqueous swelling media is larger than that in saline swelling media. Also, the equilibrium swelling ratios of PVA saline gel in aqueous and in saline media decrease with the increase of gel concentration and the increase of freezing and thawing cycle times. The decreasing speed of equilibrium swelling ratio with the increase of freezing and thawing cycle times of PVA gel in distilled water is faster than that in physiological saline. The swelling kinetic equation can sufficiently describe the swelling behavior of PVA physiological saline gel.
基金Project(102101210100) supported by the Key Science and Technology Project of Henan Province,ChinaProjects(2011B430023,12B430021) supported by the Natural Science Foundation of Henan Province,China
文摘A series of porous intelligent hydrogels, which exhibited appropriate lower critical solution temperature (LCST) and fast response behavior, were synthesized by radiation method. The structure and surface morphology of hydrogels were examined by the infrared radiation and the scanning electron microscopy, respectively. The influences of the content of crosslinking agent and relative molecular mass of polyethylene glycol (PEG) on the swelling properties of hydrogels were discussed. The molecular mechanics simulations were performed to investigate the phase transformation mechanism of poly(N-isopropyl acrylamide) (PNIPA) hydrogel. The results show that macropores are observed in hydrogels, whereas hydrogels prepared without using PEG have a dense surface. LCST of hydrogels increases with the increase of relative molecular mass of PEG. The swelling mechanism of PNIPA porous hydrogels follows non-Fickian diffusion model. The theoretical maximum water absorption S∞ is approximately consistent with experimental value according to the second-order kinetics model established by Schott. The molecule chains of PNIPA hydrogel begin folding and curling, resulting in volume shrinkage at 305 K. There are much intramolecular nonbonding interactions in molecule chains of hydrogels. The porous hydrogels are expected to be applied in the field of artificial intelligence material.