Centroidal Voronoi tessellations(CVTs) have become a useful tool in many applications ranging from geometric modeling,image and data analysis,and numerical partial differential equations,to problems in physics,astroph...Centroidal Voronoi tessellations(CVTs) have become a useful tool in many applications ranging from geometric modeling,image and data analysis,and numerical partial differential equations,to problems in physics,astrophysics,chemistry,and biology. In this paper,we briefly review the CVT concept and a few of its generalizations and well-known properties.We then present an overview of recent advances in both mathematical and computational studies and in practical applications of CVTs.Whenever possible,we point out some outstanding issues that still need investigating.展开更多
An information model is defined to support sharing scientific information on Web for archaeological pottery. Apart from non-shape information, such as age, material, etc., the model also consists of shape information ...An information model is defined to support sharing scientific information on Web for archaeological pottery. Apart from non-shape information, such as age, material, etc., the model also consists of shape information and shape feature information. Shape information is collected by Lasers Scanner and geometric modelling techniques. Feature information is generated from shape information via feature extracting techniques. The model is used in an integrated storage, archival, and sketch-based query and retrieval system for 3D objects, native American ceramic vessels. A novel aspect of the information model is that it is totally implemented with XML, and is designed for Web-based visual query and storage application.展开更多
It is a comparatively convenient technique to investigate the motion of a particle with the help of the differential geometry the-ory,rather than directly decomposing the motion in the Cartesian coordinates.The new mo...It is a comparatively convenient technique to investigate the motion of a particle with the help of the differential geometry the-ory,rather than directly decomposing the motion in the Cartesian coordinates.The new model of three-dimensional (3D) guidance problem for interceptors is presented in this paper,based on the classical differential geometry curve theory.Firstly,the kinematical equations of the line of sight (LOS) are gained by carefully investigating the rotation principle of LOS,the kinematic equations of LOS are established,and the concepts of curvature and torsion of LOS are proposed.Simultaneously,the new relative dynamic equations between interceptor and target are constructed.Secondly,it is found that there is an instan-taneous rotation plane of LOS (IRPL) in the space,in which two-dimensional (2D) guidance laws could be constructed to solve 3D interception guidance problems.The spatial 3D true proportional navigation (TPN) guidance law could be directly introduced in IRPL without approximation and linearization for dimension-reduced 2D TPN.In addition,the new series of augmented TPN (APN) and LOS angular acceleration guidance laws (AAG) could also be gained in IRPL.After that,the dif-ferential geometric guidance commands (DGGC) of guidance laws in IRPL are advanced,and we prove that the guidance commands in arc-length system proposed by Chiou and Kuo are just a special case of DGGC.Moreover,the performance of the original guidance laws will be reduced after the differential geometric transformation.At last,an exoatmospheric intercep-tion is taken for simulation to demonstrate the differential geometric modeling proposed in this paper.展开更多
基金supported by the US Department of Energy Office of Science Climate Change Prediction Program through grant numbers DE-FG02-07ER64431 and DE-FG02-07ER64432the US National Science Foundation under grant numbers DMS-0609575 and DMS-0913491
文摘Centroidal Voronoi tessellations(CVTs) have become a useful tool in many applications ranging from geometric modeling,image and data analysis,and numerical partial differential equations,to problems in physics,astrophysics,chemistry,and biology. In this paper,we briefly review the CVT concept and a few of its generalizations and well-known properties.We then present an overview of recent advances in both mathematical and computational studies and in practical applications of CVTs.Whenever possible,we point out some outstanding issues that still need investigating.
基金Project (No. IIS-9980166) supported by the National NaturalScience Foundation of America
文摘An information model is defined to support sharing scientific information on Web for archaeological pottery. Apart from non-shape information, such as age, material, etc., the model also consists of shape information and shape feature information. Shape information is collected by Lasers Scanner and geometric modelling techniques. Feature information is generated from shape information via feature extracting techniques. The model is used in an integrated storage, archival, and sketch-based query and retrieval system for 3D objects, native American ceramic vessels. A novel aspect of the information model is that it is totally implemented with XML, and is designed for Web-based visual query and storage application.
文摘It is a comparatively convenient technique to investigate the motion of a particle with the help of the differential geometry the-ory,rather than directly decomposing the motion in the Cartesian coordinates.The new model of three-dimensional (3D) guidance problem for interceptors is presented in this paper,based on the classical differential geometry curve theory.Firstly,the kinematical equations of the line of sight (LOS) are gained by carefully investigating the rotation principle of LOS,the kinematic equations of LOS are established,and the concepts of curvature and torsion of LOS are proposed.Simultaneously,the new relative dynamic equations between interceptor and target are constructed.Secondly,it is found that there is an instan-taneous rotation plane of LOS (IRPL) in the space,in which two-dimensional (2D) guidance laws could be constructed to solve 3D interception guidance problems.The spatial 3D true proportional navigation (TPN) guidance law could be directly introduced in IRPL without approximation and linearization for dimension-reduced 2D TPN.In addition,the new series of augmented TPN (APN) and LOS angular acceleration guidance laws (AAG) could also be gained in IRPL.After that,the dif-ferential geometric guidance commands (DGGC) of guidance laws in IRPL are advanced,and we prove that the guidance commands in arc-length system proposed by Chiou and Kuo are just a special case of DGGC.Moreover,the performance of the original guidance laws will be reduced after the differential geometric transformation.At last,an exoatmospheric intercep-tion is taken for simulation to demonstrate the differential geometric modeling proposed in this paper.