Fractal geometry was used to describe the distribution characteristics of wear debris group collected from pin-on-disc wear tester under dry friction conditions, and experimental study and theoretical analysis were ma...Fractal geometry was used to describe the distribution characteristics of wear debris group collected from pin-on-disc wear tester under dry friction conditions, and experimental study and theoretical analysis were made for the distribution features of wear debris group. It was found that the wear debris size distribution conforms to the fractal distribution law. Two numerical parameters, fractal dimension D and scale coefficient C, were defined with their geometric and tribological meanings and calculating methods given. It was discovered that these two parameters can be used to describe the variation law of wear status, which provide the basis for diagnosis and prognosis of tribological systems.展开更多
In this paper, a new method based on morphologic research named reconstruction cross-component removal (RCCR) is developed to analyze geometrical scattering waves of an underwater target. Combining the origin of the...In this paper, a new method based on morphologic research named reconstruction cross-component removal (RCCR) is developed to analyze geometrical scattering waves of an underwater target. Combining the origin of the cross-component in Wigner-ViUe distribution, the highlight model of target echoes and time-frequency features of linear frequency-modulated signal can remove cross-components produced by multiple component signals in Wigner-Ville distribution and recover the auto-components of output signals. This method is used in experimental data processing, which can strengthen the real geometric highlights, and restrain the cross components. It is demonstrated that this method is helpful to analyze the geometrical scattering waves, providing an effective solution to underwater target detection and recognition.展开更多
A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vort...A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance.展开更多
Due to the relative movement between space debris and background stars,the blending of objects and stars is ineluctable through observation.It brings down position accuracy of objects and even makes the tracking break...Due to the relative movement between space debris and background stars,the blending of objects and stars is ineluctable through observation.It brings down position accuracy of objects and even makes the tracking break down in worse conditions.In view of the difference of geometry between stars and objects in space debris observation,a technique for separating blended objects based on mathematical morphology is presented.It's sufficiently flexible to be applied in image processing,and the blending images can be separated effectively with a high degree of centroid precision.展开更多
文摘Fractal geometry was used to describe the distribution characteristics of wear debris group collected from pin-on-disc wear tester under dry friction conditions, and experimental study and theoretical analysis were made for the distribution features of wear debris group. It was found that the wear debris size distribution conforms to the fractal distribution law. Two numerical parameters, fractal dimension D and scale coefficient C, were defined with their geometric and tribological meanings and calculating methods given. It was discovered that these two parameters can be used to describe the variation law of wear status, which provide the basis for diagnosis and prognosis of tribological systems.
基金Foundation item: Supported by the National Natural Science Foundation of China, under Grant No.51279033 and the Natural Science Foundation of Heilongjiang Province, China, under Grant No. F201346.
文摘In this paper, a new method based on morphologic research named reconstruction cross-component removal (RCCR) is developed to analyze geometrical scattering waves of an underwater target. Combining the origin of the cross-component in Wigner-ViUe distribution, the highlight model of target echoes and time-frequency features of linear frequency-modulated signal can remove cross-components produced by multiple component signals in Wigner-Ville distribution and recover the auto-components of output signals. This method is used in experimental data processing, which can strengthen the real geometric highlights, and restrain the cross components. It is demonstrated that this method is helpful to analyze the geometrical scattering waves, providing an effective solution to underwater target detection and recognition.
基金the National Natural Science Foundation of China(Grant No.51479083)prospective Joint Research Proj ectofJiangsu Province(Grant No.BY2015064-08)+1 种基金Primary Research&Development Plan of Jiangsu Province(Grant Nos.BE2015001-3 and BE2015146)333Project of Jiangsu Province and Six Talent Peaks Project in Jiangsu Province(Grant No.HYGC-008)
文摘A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance.
基金supported by the National Natural Science Foundation of China (Grant No. 11033009)
文摘Due to the relative movement between space debris and background stars,the blending of objects and stars is ineluctable through observation.It brings down position accuracy of objects and even makes the tracking break down in worse conditions.In view of the difference of geometry between stars and objects in space debris observation,a technique for separating blended objects based on mathematical morphology is presented.It's sufficiently flexible to be applied in image processing,and the blending images can be separated effectively with a high degree of centroid precision.