A knock-down factor is commonly used to take into account the obvious decline of the buckling load in a cylindrical shell caused by the inevitable imperfections. In 1968, NASA guideline SP-8007 gave knock-down factors...A knock-down factor is commonly used to take into account the obvious decline of the buckling load in a cylindrical shell caused by the inevitable imperfections. In 1968, NASA guideline SP-8007 gave knock-down factors which rely on a lower-bound curve taken from experimental data. Recent research has indicated that the NASA knock-down factors are inclined to produce very conservative estimations for the buckling load of imperfect shells, due to the limitations of the computational power and the experimental skills available five decades ago. A novel knock-down factor is proposed composed of two parts for the metallic stiffened cylinders. A deterministic study is applied to achieve the first part of the knock-down factor considering the measured geometric imperfection, the other types of imperfections are considered in the second part using a stochastic analysis. A smeared model is used to achieve the implementation of the measured geometric imperfection for the stiffened cylinder. This new robust and less conservative design for the stiffened cylinders is validated by using test results.展开更多
This paper describes computational work to understand the unsteady flow-field of a shock wave discharging from an exit of a duct and impinging upon a flat plate. A flat plate is located downstream, and normal to the a...This paper describes computational work to understand the unsteady flow-field of a shock wave discharging from an exit of a duct and impinging upon a flat plate. A flat plate is located downstream, and normal to the axis of the duct. The distance between the exit of the duct and flat plate is changed. In the present study, two different duct geometries (i.e., square and cross section) are simulated to investigate the effect of duct geometry on the un-steady flows of a shock wave. In computation, the total variation diminishing (TVD) scheme is employed to solve three-dimensional, unsteady, compressible, Euler equations. Computations are performed over the range of shock Mach number from 1.05 to 1.75. Computational results can predict the three-dimensional dynamic behaviour of the shock wave impinging upon the flat plate. The results obtained show that the pressure increase generated on the plate by the shock impingement depends on the duct geometry and the distance between the duct exit and plate, as well as the shock Mach number. It is also found that for the duct with cross-section, the unsteady loads acting on the flat plate are less, compared with the square duct.展开更多
基金supported by the European Community’s Seventh Framework Programme FP7/2007-2013(Grant No.282522)
文摘A knock-down factor is commonly used to take into account the obvious decline of the buckling load in a cylindrical shell caused by the inevitable imperfections. In 1968, NASA guideline SP-8007 gave knock-down factors which rely on a lower-bound curve taken from experimental data. Recent research has indicated that the NASA knock-down factors are inclined to produce very conservative estimations for the buckling load of imperfect shells, due to the limitations of the computational power and the experimental skills available five decades ago. A novel knock-down factor is proposed composed of two parts for the metallic stiffened cylinders. A deterministic study is applied to achieve the first part of the knock-down factor considering the measured geometric imperfection, the other types of imperfections are considered in the second part using a stochastic analysis. A smeared model is used to achieve the implementation of the measured geometric imperfection for the stiffened cylinder. This new robust and less conservative design for the stiffened cylinders is validated by using test results.
文摘This paper describes computational work to understand the unsteady flow-field of a shock wave discharging from an exit of a duct and impinging upon a flat plate. A flat plate is located downstream, and normal to the axis of the duct. The distance between the exit of the duct and flat plate is changed. In the present study, two different duct geometries (i.e., square and cross section) are simulated to investigate the effect of duct geometry on the un-steady flows of a shock wave. In computation, the total variation diminishing (TVD) scheme is employed to solve three-dimensional, unsteady, compressible, Euler equations. Computations are performed over the range of shock Mach number from 1.05 to 1.75. Computational results can predict the three-dimensional dynamic behaviour of the shock wave impinging upon the flat plate. The results obtained show that the pressure increase generated on the plate by the shock impingement depends on the duct geometry and the distance between the duct exit and plate, as well as the shock Mach number. It is also found that for the duct with cross-section, the unsteady loads acting on the flat plate are less, compared with the square duct.