基于MCMD_Z(maximum consistency with minimum distance and robust Z-score)算法思想,提出了一种稳健的且适用于平面、二次曲面(球、圆柱、圆锥)基元高精度拟合算法.算法依据距离和最小准则,从含有粗差的点集中选取最佳点子集拟合可...基于MCMD_Z(maximum consistency with minimum distance and robust Z-score)算法思想,提出了一种稳健的且适用于平面、二次曲面(球、圆柱、圆锥)基元高精度拟合算法.算法依据距离和最小准则,从含有粗差的点集中选取最佳点子集拟合可靠模型初值,并采用稳健Z分数方法循环剔除粗差;对剔除粗差后的保留点集采用加权最小二乘迭代方法拟合.实验表明,对粗差含量较高的点云数据,该算法均能有效剔除粗差、拟合出高精度的几何基元.展开更多
The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording the...The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.展开更多
文摘基于MCMD_Z(maximum consistency with minimum distance and robust Z-score)算法思想,提出了一种稳健的且适用于平面、二次曲面(球、圆柱、圆锥)基元高精度拟合算法.算法依据距离和最小准则,从含有粗差的点集中选取最佳点子集拟合可靠模型初值,并采用稳健Z分数方法循环剔除粗差;对剔除粗差后的保留点集采用加权最小二乘迭代方法拟合.实验表明,对粗差含量较高的点云数据,该算法均能有效剔除粗差、拟合出高精度的几何基元.
基金Project (51074181) supported by the National Natural Science Foundation of ChinaProject (2010ssxt241) supported by Precious Dissertation Innovation Foundation of Central South University, China
文摘The method of infrared thermography to predict the temperature of the sulfide ores has a large error. To solve this problem, the temperature of the sulfide ores is measured by thermal infrared imager and recording thermometric instrument contrastively. The main factors, including emissivity, distance, angle and dust concentration that affect the temperature measurement precision, are analyzed. The regression equations about the individual factors and comprehensive factors are obtained by analyzing test data. The application of the regression equations improves the precision of the thermal infrared imager. The geometric information lost in traditional infrared thermometry is determined by visualization grid method and interpolation method, the relationship between the infrared imager and geometry information is established. The geometry location can be measured exactly.