为解决传统物联网大数据传输算法存在的网络链路抖动频繁、传输能力受限以及传输误码率大的不足,提出了一种基于区域时变聚类采样机制的物联网大数据传输算法。首先,根据物联网信号发射中常用的LTE-5G信号特性,采取分信道传输及抽样过...为解决传统物联网大数据传输算法存在的网络链路抖动频繁、传输能力受限以及传输误码率大的不足,提出了一种基于区域时变聚类采样机制的物联网大数据传输算法。首先,根据物联网信号发射中常用的LTE-5G信号特性,采取分信道传输及抽样过滤技术来实现数据传输过程中的正交化,消除节点间因信号频率相似而导致的干涉现象,提高网络数据传输效率;随后,几何聚类机制与能量-阈值映射裁决方法,构建了稳定聚类采样方法,利用功率最佳及能量最佳的方式来实现传输节点的筛选,强化传输链路的稳定性能,降低因链路抖动而导致误码的风险。仿真实验结果表明:与常见的超高斯频率漂移传输提升机制(Transmission Mechanism of Super Gauss Frequency Drift Transmission,SGFD-T机制)及拉普拉斯信道滤波传输机制Laplasse Channel Filtering Transmission Mechanism,LCF-T机制)相比,所提算法具有更大的上传带宽和更低的数据采集错误率与误码率。展开更多
文摘为解决传统加权K最近邻算法(WKNN,Weighting K-Nearest Neighbor)定位方法中选取K值存在局限性影响定位精度的问题,提出了一种改进型几何聚类指纹室内定位方法。该方法首先利用网格分布在定位区域构建指纹点几何位置分布,采集指纹点接收信号强度(RSS,Received Signal Strength)和位置信息,建立指纹定位数据库;然后,利用支持向量机分类算法在解决高维度和非线性问题上的优势选取定位点的多个近邻指纹点,根据对定位贡献度的大小筛选近邻指纹点并构建几何聚类定位区域;最后利用WKNN算法进行定位。实验结果表明,提出的方法解决了传统WKNN方法中多边形定位区域在K值选取存在局限性的问题,具有更高的定位精度和工程实用性。
文摘为解决传统物联网大数据传输算法存在的网络链路抖动频繁、传输能力受限以及传输误码率大的不足,提出了一种基于区域时变聚类采样机制的物联网大数据传输算法。首先,根据物联网信号发射中常用的LTE-5G信号特性,采取分信道传输及抽样过滤技术来实现数据传输过程中的正交化,消除节点间因信号频率相似而导致的干涉现象,提高网络数据传输效率;随后,几何聚类机制与能量-阈值映射裁决方法,构建了稳定聚类采样方法,利用功率最佳及能量最佳的方式来实现传输节点的筛选,强化传输链路的稳定性能,降低因链路抖动而导致误码的风险。仿真实验结果表明:与常见的超高斯频率漂移传输提升机制(Transmission Mechanism of Super Gauss Frequency Drift Transmission,SGFD-T机制)及拉普拉斯信道滤波传输机制Laplasse Channel Filtering Transmission Mechanism,LCF-T机制)相比,所提算法具有更大的上传带宽和更低的数据采集错误率与误码率。