The hard tissues of squid can provide important information for species identification. In this study, we used statolith and beak to identify three squid species including Uroteuthis duvaucelii, Loliolus beka, and U. ...The hard tissues of squid can provide important information for species identification. In this study, we used statolith and beak to identify three squid species including Uroteuthis duvaucelii, Loliolus beka, and U. edulis in the South China Sea. Because of the highly overlapping habitat and similar body morphology of the three squid species, we explored four different ways to identify them, by using statolith, upper beak, lower beak and a combination of statolith and beak. An outline geometric morphometric method and stepwise discriminant analysis were used to evaluate the most suitable method for the identification. We found that the combination of statolith and beak had the highest cross validation rate that was 75.0%, 87.5% and 88.7% for U. duvaucelii, L. beka and U. edulis, respectively. Using two beaks had similar results and the lowest cross validation rate was 60.0%, 50.0%, and 73.7% for the upper beak, 46.9%, 58.5% and 75.3% for the lower beak of U. duvaucelii, L. beka and U. edulis, respectively. Analyzing with the statolith had moderate cross validation which was 72.2%, 80.0%, and 87.7% for U. duvaucelii, L. beka and U. edulis, respectively. From the results it is suggested when the entire body of a squid is available, a combination of statolith and beak should be used for the identification. When only one hard tissue is available, species identification can be subjected to large errors.展开更多
We propose a general method of deterrnining the distribution of topological defects on axisymmetric surface, and study the distribution of topological defects on biconcave-discoid surface, which is the geometric confi...We propose a general method of deterrnining the distribution of topological defects on axisymmetric surface, and study the distribution of topological defects on biconcave-discoid surface, which is the geometric configuration of red blood cell. There are three most possible cases of the distribution of the topological defects on the biconcave surface: four defects charged with 1/2, two defects charged with +1, or one defect charged with 2. For the four defect charged with 1/2, they sit at the vertices of a square imbedded in the equator of biconcave surface.展开更多
In this paper,13 kinds of transition metals are studied as catalysts for the hydrogen production from coal pyrolysis, and relationships between the catalytic activity of a transition metal and its outer electron confi...In this paper,13 kinds of transition metals are studied as catalysts for the hydrogen production from coal pyrolysis, and relationships between the catalytic activity of a transition metal and its outer electron configuration,d% of transition metals and geometric configuration are summarized.Experimental results show that the same group of transition metals show good similarity for hydrogen production from coal pyrolysis;the d%of transition metals which have activity for hydrogen production from coal pyrolysis is between 40%-50%;all transition metals which have catalytic activity possess either a face-centered cubic or a hexagonal crystal structure.Therefore,it is important to choose a transition metal with an appropriate d%and crystal structure as the catalyst for hydrogen production from coal pyrolysis.展开更多
基金the National Natural Science Foundation of China (No. NSFC41476129)the Shanghai Leading Academic Discipline Project (Fisheries Discipline)supported by Shanghai Ocean University International Center for Marine Studies and Shanghai 1000 Talents Program
文摘The hard tissues of squid can provide important information for species identification. In this study, we used statolith and beak to identify three squid species including Uroteuthis duvaucelii, Loliolus beka, and U. edulis in the South China Sea. Because of the highly overlapping habitat and similar body morphology of the three squid species, we explored four different ways to identify them, by using statolith, upper beak, lower beak and a combination of statolith and beak. An outline geometric morphometric method and stepwise discriminant analysis were used to evaluate the most suitable method for the identification. We found that the combination of statolith and beak had the highest cross validation rate that was 75.0%, 87.5% and 88.7% for U. duvaucelii, L. beka and U. edulis, respectively. Using two beaks had similar results and the lowest cross validation rate was 60.0%, 50.0%, and 73.7% for the upper beak, 46.9%, 58.5% and 75.3% for the lower beak of U. duvaucelii, L. beka and U. edulis, respectively. Analyzing with the statolith had moderate cross validation which was 72.2%, 80.0%, and 87.7% for U. duvaucelii, L. beka and U. edulis, respectively. From the results it is suggested when the entire body of a squid is available, a combination of statolith and beak should be used for the identification. When only one hard tissue is available, species identification can be subjected to large errors.
基金The project supported by National Natural Science Foundation of China
文摘We propose a general method of deterrnining the distribution of topological defects on axisymmetric surface, and study the distribution of topological defects on biconcave-discoid surface, which is the geometric configuration of red blood cell. There are three most possible cases of the distribution of the topological defects on the biconcave surface: four defects charged with 1/2, two defects charged with +1, or one defect charged with 2. For the four defect charged with 1/2, they sit at the vertices of a square imbedded in the equator of biconcave surface.
文摘In this paper,13 kinds of transition metals are studied as catalysts for the hydrogen production from coal pyrolysis, and relationships between the catalytic activity of a transition metal and its outer electron configuration,d% of transition metals and geometric configuration are summarized.Experimental results show that the same group of transition metals show good similarity for hydrogen production from coal pyrolysis;the d%of transition metals which have activity for hydrogen production from coal pyrolysis is between 40%-50%;all transition metals which have catalytic activity possess either a face-centered cubic or a hexagonal crystal structure.Therefore,it is important to choose a transition metal with an appropriate d%and crystal structure as the catalyst for hydrogen production from coal pyrolysis.