An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the ma...An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.展开更多
Within today's product development process, various FE-simulations (finite element) for the functional validation of the desired characteristics are made to avoid expensive testing with real components. Those simul...Within today's product development process, various FE-simulations (finite element) for the functional validation of the desired characteristics are made to avoid expensive testing with real components. Those simulations are performed with great effort for discretization, use of simulations conditions, like taking different non-linearities (i.e., material behavior, etc.) into account, to create meaningful results. Despite knowing the effects of deformations occurring during the production processes, always the non-deformed design model of a CAD-system (computer aided design) is used for the FE-simulations. It seems rather doubtful that further refinement of simulation methods makes sense, if the real manufactured geometry of the component is not considered for in the simulation. For an efficient exploit of the potential of simulation methods, an approach has been developed which offers a geometry model for simulation based on the existing CAD-model but with integrated production deviations as soon as a first prototype is at hand by adapting the FE-mesh to the real, 3D surface detected geometry.展开更多
基金Project(51378457)supported by the National Natural Science Foundation of China
文摘An essential step for the realization of free-form surface structures is to create an efficient structural gird that satisfies not only the architectural aesthetics,but also the structural performance.Employing the main stress trajectories as the representation of force flows on a free-form surface,an automatic grid generation approach is proposed for the architectural design.The algorithm automatically plots the main stress trajectories on a 3D free-form surface,and adopts a modified advancing front meshing technique to generate the structural grid.Based on the proposed algorithm,an automatic grid generator named "St-Surmesh" is developed for the practical architectural design of free-form surface structure.The surface geometry of one of the Sun Valleys in Expo Axis for the Expo Shanghai 2010 is selected as a numerical example for validating the proposed approach.Comparative studies are performed to demonstrate how different structural grids affect the design of a free-form surface structure.
文摘Within today's product development process, various FE-simulations (finite element) for the functional validation of the desired characteristics are made to avoid expensive testing with real components. Those simulations are performed with great effort for discretization, use of simulations conditions, like taking different non-linearities (i.e., material behavior, etc.) into account, to create meaningful results. Despite knowing the effects of deformations occurring during the production processes, always the non-deformed design model of a CAD-system (computer aided design) is used for the FE-simulations. It seems rather doubtful that further refinement of simulation methods makes sense, if the real manufactured geometry of the component is not considered for in the simulation. For an efficient exploit of the potential of simulation methods, an approach has been developed which offers a geometry model for simulation based on the existing CAD-model but with integrated production deviations as soon as a first prototype is at hand by adapting the FE-mesh to the real, 3D surface detected geometry.