To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerica...To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.展开更多
Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code p...Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code provisions in ANSI/AISC 360-10 about such members is discussed. A nonlinear finite element analysis was carried out, considering the combined effects of plasticity, residual stress and geometrical imperfections, to simulate the stability behavior of the specimens. The reliability of the numerical model was validated by comparisons with experimental results. The results show that stability behavior of plate girders with laterally unbraced ends is widely different from that of typical simply supported thin-walled beams. The structural response is also sensitive to initial geometrical imperfections of this objects. The model is used to improve the mechanical design of transverse stiffeners over the supports. The positive effect and offsetting influence of imperfections of thicker and additional transverse stiffeners on overall stability behavior are highlighted. A few suggestions for design process are also given.展开更多
基金The National Key Technology R&D Program of China(No.2012BAJ03B06)the National Natural Science Foundation of China(No.51308105)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Southeast University(No.KYLX_0152,SJLX_0084,KYLX_0149)
文摘To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.
基金The authors gratefully acknowledge sponsors of this research: National Science Foundation of China (No. 51278296).
文摘Stability tests of three plate girders laterally unbraced on both ends, which were scale models of real plate girders in heavy plants for tower-type boilers, are presented and investigated. The applicability of code provisions in ANSI/AISC 360-10 about such members is discussed. A nonlinear finite element analysis was carried out, considering the combined effects of plasticity, residual stress and geometrical imperfections, to simulate the stability behavior of the specimens. The reliability of the numerical model was validated by comparisons with experimental results. The results show that stability behavior of plate girders with laterally unbraced ends is widely different from that of typical simply supported thin-walled beams. The structural response is also sensitive to initial geometrical imperfections of this objects. The model is used to improve the mechanical design of transverse stiffeners over the supports. The positive effect and offsetting influence of imperfections of thicker and additional transverse stiffeners on overall stability behavior are highlighted. A few suggestions for design process are also given.