Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall info...Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.展开更多
The developable surface is an important surface in computer aided design, geometric modeling and industrial manufactory. It is often given in the standard parametric form, but it can also be in the implicit form which...The developable surface is an important surface in computer aided design, geometric modeling and industrial manufactory. It is often given in the standard parametric form, but it can also be in the implicit form which is commonly used in algebraic geometry. Not all algebraic developable surfaces have rational parametrizations. In this paper, the authors focus on the rational developable surfaces. For a given algebraic surface, the authors first determine whether it is developable by geometric inspection, and then give a rational proper parametrization in the affrmative case. For a rational parametric surface, the authors also determine the developability and give a proper reparametrization for the developable surface.展开更多
This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and...This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and the assumption of a circumferentially uniform flow at the design condition, a corrected method for volute design is adopted. By means of this method, corresponding to five geometric parameters affecting the volute overall performance, ten volute cases are designed. Secondly, the numerical simulation is employed and the detailed flow field and losses in different volutes with different geometric parameters are analyzed. The numerical investigation reveals that in all of the five geometric parameters, the radial location of the cross-section has the strongest influence on the performance of the volute. The non-uniform volute inlet formed by the upward vaned diffuser outlet flow is another important factor. Finally a relatively better value of D1/D2 is concluded.展开更多
基金Project supported by Changwon National University in 2010
文摘Flow distribution in branch piping system is affected by flow characteristics and different geometric variations. Most of the flow distribution studies are performed with one-dimensional analysis to yield overall information only. However, detailed analysis is required to find effects of design parameters on the flow distribution. For this aspect, three-dimensional turbulent flow analysis was performed to assess turbulence model performance and effects of upstream pressure and branch pipe geometry. Three different turbulence models of standard k-e model, realizable k-e model and standard k-co yield similar results, indicating small effects of turbulence models on flow characteristics analysis. Geometric variations include area ratio of main and branch pipes, branch pipe diameter, and connection shape of main and branch pipes. Among these parameters, area ratio and branch diameter and shape show strong effect on flow distribution due to high friction and minor loss. Uniform flow distribution is one of common requirements in the branch piping system and this can be achieved with rather high total loss design.
基金supported by Beijing Nova Program under Grant No.Z121104002512065The author PerezDíaz S is a member of the Research Group ASYNACS(Ref.CCEE2011/R34)
文摘The developable surface is an important surface in computer aided design, geometric modeling and industrial manufactory. It is often given in the standard parametric form, but it can also be in the implicit form which is commonly used in algebraic geometry. Not all algebraic developable surfaces have rational parametrizations. In this paper, the authors focus on the rational developable surfaces. For a given algebraic surface, the authors first determine whether it is developable by geometric inspection, and then give a rational proper parametrization in the affrmative case. For a rational parametric surface, the authors also determine the developability and give a proper reparametrization for the developable surface.
文摘This paper discusses the influence of various volute designs on volute overall performance for a certain centrifu- gal compressor with both vaned and vaneless diffuser. Firstly, based on a free vortex flow pattern and the assumption of a circumferentially uniform flow at the design condition, a corrected method for volute design is adopted. By means of this method, corresponding to five geometric parameters affecting the volute overall performance, ten volute cases are designed. Secondly, the numerical simulation is employed and the detailed flow field and losses in different volutes with different geometric parameters are analyzed. The numerical investigation reveals that in all of the five geometric parameters, the radial location of the cross-section has the strongest influence on the performance of the volute. The non-uniform volute inlet formed by the upward vaned diffuser outlet flow is another important factor. Finally a relatively better value of D1/D2 is concluded.