A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for ...A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for thickness distribution and structure shape to reduce overall tensile stress, deflection and reinforcements. The finite element analysis using Sofistik software shows that a distributed concrete thickness reduces shell stresses, deflections and reinforcements. A geometrically non-linear analysis of these structures with and without imperfections was also performed. To take into account the possible plastification of the material an analysis with non-linear material was performed simultaneously with the geometrically non-linear analysis. This helps in developing an understanding of the structural behaviour and helps to identify all potential failure causes using failure analysis.展开更多
Inflatable membrane antennas have been extensively applied in space missions;however,the simulation methods are not perfect,and many simulation methods still have many difficulties in accuracy,efficiency,and stability...Inflatable membrane antennas have been extensively applied in space missions;however,the simulation methods are not perfect,and many simulation methods still have many difficulties in accuracy,efficiency,and stability.Therefore,the extended position-based dynamics(XPBD)method is employed and improved for the simulation of folded inflatable structures in this paper.To overcome the problem that the original XPBD method with only geometric constraints does not contain any mechanical information and cannot reflect the mechanical characteristics of the structure,we improve the XPBD method by introducing the strain energy constraint.Due to the complicated nonlinear characteristics of the membrane structures,the results with the traditional finite element method(Abaqus)cannot converge,while the tension field theory(TFT)can,but some pretreatments are needed.Compared with them,the method in this paper is simple and has better stability to accurately predict the displacement,stress,and wrinkle region of the membrane structure.In addition,the present method is also compared with the experiment in the reference to verify the feasibility of the folded tube simulation.Finally,the present method is applied to simulate inflatable membrane antennas and analyze the deployable driving force and deployable process sequence of each component.展开更多
文摘A finite element analysis, including static and buckling analysis is presented for several notable concrete spherical shells around the world. Also, the structural optimization study of these shells was performed for thickness distribution and structure shape to reduce overall tensile stress, deflection and reinforcements. The finite element analysis using Sofistik software shows that a distributed concrete thickness reduces shell stresses, deflections and reinforcements. A geometrically non-linear analysis of these structures with and without imperfections was also performed. To take into account the possible plastification of the material an analysis with non-linear material was performed simultaneously with the geometrically non-linear analysis. This helps in developing an understanding of the structural behaviour and helps to identify all potential failure causes using failure analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.11922203 and 11772074).
文摘Inflatable membrane antennas have been extensively applied in space missions;however,the simulation methods are not perfect,and many simulation methods still have many difficulties in accuracy,efficiency,and stability.Therefore,the extended position-based dynamics(XPBD)method is employed and improved for the simulation of folded inflatable structures in this paper.To overcome the problem that the original XPBD method with only geometric constraints does not contain any mechanical information and cannot reflect the mechanical characteristics of the structure,we improve the XPBD method by introducing the strain energy constraint.Due to the complicated nonlinear characteristics of the membrane structures,the results with the traditional finite element method(Abaqus)cannot converge,while the tension field theory(TFT)can,but some pretreatments are needed.Compared with them,the method in this paper is simple and has better stability to accurately predict the displacement,stress,and wrinkle region of the membrane structure.In addition,the present method is also compared with the experiment in the reference to verify the feasibility of the folded tube simulation.Finally,the present method is applied to simulate inflatable membrane antennas and analyze the deployable driving force and deployable process sequence of each component.