[Objective] The aim was to conduct non-destructive monitoring on wheat leaf in field and discuss the method to measure geometric phenotype of flag leaf through digital image processing in order to establish relationsh...[Objective] The aim was to conduct non-destructive monitoring on wheat leaf in field and discuss the method to measure geometric phenotype of flag leaf through digital image processing in order to establish relationship between geometric pheno- type of flag leaf and N fertilizer regulation. [Method] Ningmai 13 was applied with N fertilizers in different amounts to discuss relationship among area, length, average width of flag leaf and applied N fertilizers using digital camera and digital image pro- cessing technique. [Result] Fertilizer is a main environmental factor influencing geo- metric phenotype of flag leaf, for example, area of flag leaf would enlarge four times and the length would increase from 15.87 to 25.33 cm by different N fertilizer amount. Thus, geometric phenotype of flag leaf would reflect N fertilizer amount at early stage. The highly accurate relationship between phenotype and N fertilizer is a reliable tech- nique to study on rules of wheat phenotype, N fertilizer and environmental factors. [Conclusion] The research indicated that digital image processing technique with scale label and dynamic background plates is an effective method to obtain geometric phenotype of sessile crops and crops with little leaf, providing a feasible scheme for non- destructive monitoring on growth dynamic of leaf's organs.展开更多
基金Supported by National Natural Science Foundation of China (50875131)~~
文摘[Objective] The aim was to conduct non-destructive monitoring on wheat leaf in field and discuss the method to measure geometric phenotype of flag leaf through digital image processing in order to establish relationship between geometric pheno- type of flag leaf and N fertilizer regulation. [Method] Ningmai 13 was applied with N fertilizers in different amounts to discuss relationship among area, length, average width of flag leaf and applied N fertilizers using digital camera and digital image pro- cessing technique. [Result] Fertilizer is a main environmental factor influencing geo- metric phenotype of flag leaf, for example, area of flag leaf would enlarge four times and the length would increase from 15.87 to 25.33 cm by different N fertilizer amount. Thus, geometric phenotype of flag leaf would reflect N fertilizer amount at early stage. The highly accurate relationship between phenotype and N fertilizer is a reliable tech- nique to study on rules of wheat phenotype, N fertilizer and environmental factors. [Conclusion] The research indicated that digital image processing technique with scale label and dynamic background plates is an effective method to obtain geometric phenotype of sessile crops and crops with little leaf, providing a feasible scheme for non- destructive monitoring on growth dynamic of leaf's organs.