An expression for energy transfer probability (η) between host (TPD) and guest (Ir(ppy)3) phosphorescent systems is proposed,and the energy transfer process in doped organic electrophosphorescent (EP) devic...An expression for energy transfer probability (η) between host (TPD) and guest (Ir(ppy)3) phosphorescent systems is proposed,and the energy transfer process in doped organic electrophosphorescent (EP) devices is discussed. The results show that (1) The rate of the triplet energy transfer (KHG and KGH) exponentially increases with the host-guest molecular distance (R), and KHG decreases quickly as the intermolecular distance of the guest (RGG) increases. In addition,the KHG/KGH ratio of the dopant system increases when R or RGG is reduced; (2) The energy transfer probability approximately linearly decreases as R increases from 0.8 to 1.2nm,and the variation of RGG can be neglected when R〈1.1nm. For 1. 1nm〈R〈l. 2nm, RGG (〈1.6nm) plays an increasingly important role when 71 drops with the latter' (3) η increases when the Forster energy transfer rate increases or Gibb's energy declines.展开更多
文摘An expression for energy transfer probability (η) between host (TPD) and guest (Ir(ppy)3) phosphorescent systems is proposed,and the energy transfer process in doped organic electrophosphorescent (EP) devices is discussed. The results show that (1) The rate of the triplet energy transfer (KHG and KGH) exponentially increases with the host-guest molecular distance (R), and KHG decreases quickly as the intermolecular distance of the guest (RGG) increases. In addition,the KHG/KGH ratio of the dopant system increases when R or RGG is reduced; (2) The energy transfer probability approximately linearly decreases as R increases from 0.8 to 1.2nm,and the variation of RGG can be neglected when R〈1.1nm. For 1. 1nm〈R〈l. 2nm, RGG (〈1.6nm) plays an increasingly important role when 71 drops with the latter' (3) η increases when the Forster energy transfer rate increases or Gibb's energy declines.