In this paper,we consider nonconvex-valued functional differential inclusions with nonlinear semigroups in Banach spaces,the existence of the integral solutions is proved.
This paper proves a Filippov type existence theorem for solutions of a boundary valueproblem for a Sturm-Liouville type differential inclusion defined by a nonconvex set-valued map.Themethod consists in application of...This paper proves a Filippov type existence theorem for solutions of a boundary valueproblem for a Sturm-Liouville type differential inclusion defined by a nonconvex set-valued map.Themethod consists in application of the contraction principle in the space of selections of the set-valuedmap instead of the space of solutions.展开更多
文摘In this paper,we consider nonconvex-valued functional differential inclusions with nonlinear semigroups in Banach spaces,the existence of the integral solutions is proved.
文摘This paper proves a Filippov type existence theorem for solutions of a boundary valueproblem for a Sturm-Liouville type differential inclusion defined by a nonconvex set-valued map.Themethod consists in application of the contraction principle in the space of selections of the set-valuedmap instead of the space of solutions.