期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高维空间凸壳数据描述的一类分类算法研究 被引量:1
1
作者 胡正平 路亮 冯春生 《燕山大学学报》 CAS 2011年第4期370-376,共7页
一类分类问题的研究目标是设计目标类样本的覆盖函数,理想情况下使得目标类样本被接受,所有非目标类的样本被拒绝。经典SVDD覆盖模型寻找包含训练数据的最小半径超球对其进行覆盖,该模型对非规则复杂分布的数据描述存在较多的冗余区域... 一类分类问题的研究目标是设计目标类样本的覆盖函数,理想情况下使得目标类样本被接受,所有非目标类的样本被拒绝。经典SVDD覆盖模型寻找包含训练数据的最小半径超球对其进行覆盖,该模型对非规则复杂分布的数据描述存在较多的冗余区域。本文提出一种基于训练集样本凸壳数据描述(Convex Hull Data Description,CHDD)的紧致覆盖模型。该模型无须参数设置,可实现对样本非规则复杂分布的自适应覆盖,并可通过利用核函数方法获得更强的非线性分类能力。当训练集包含噪声样本时,通过拒绝一定比例的目标类样本可获得更为鲁棒的凸壳边界描述。在UCI数据库、MNIST手写体数据库和MIT-CBCL人脸识别数据库上的实验结果表明了本文方法的有效性,相比现有一类分类算法,CHDD取得更好的分类效果。 展开更多
关键词 一类分类器 高维空间 凸壳数据描述
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部