Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure ...Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.展开更多
Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the s...Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.展开更多
基金Work supported by the Second Stage of Brain Korea 21 Projects Work(2010-0020163) supported by the Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.
文摘Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.