An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vert...An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vertices with the vertices of falling into its region B,so that the primary polygon could be partitioned into two subpolygons. Finally, this method was applied recursively to the subpolygons until all the concave vertices were removed. This algorithm partitions the polygon into O(l) convex parts, its time complexity is max(O(n),O(l 2)) multiplications, where n is the number of vertices of the polygon and l is the number of the concave vertices.展开更多
文摘An algorithm for partitioning arbitrary simple polygons into a number of convex parts was presented. The concave vertices were determined first, and then they were moved by using the method connecting the concave vertices with the vertices of falling into its region B,so that the primary polygon could be partitioned into two subpolygons. Finally, this method was applied recursively to the subpolygons until all the concave vertices were removed. This algorithm partitions the polygon into O(l) convex parts, its time complexity is max(O(n),O(l 2)) multiplications, where n is the number of vertices of the polygon and l is the number of the concave vertices.