针对传统机组组合研究中因模型不够完善、约束过于简化而引起的计算准确度低和系统安全性差的缺陷,建立了考虑潮流方程和水电精确出力的水火机组组合(hydrothermal unit commitment,HTUC)模型。围绕该模型,文中首先采用广义Benders分解...针对传统机组组合研究中因模型不够完善、约束过于简化而引起的计算准确度低和系统安全性差的缺陷,建立了考虑潮流方程和水电精确出力的水火机组组合(hydrothermal unit commitment,HTUC)模型。围绕该模型,文中首先采用广义Benders分解算法将其划分为一个混合整数线性规划主问题和一个非线性规划子问题;然后将该子问题按时段进一步分解为T个规模较小的子问题,T为调度周期。其中,主问题对应于传统的水火联合调度(hydrothermal scheduling,HTS),子问题则是包含电压、无功等变量的约束潮流(constrained power flow,CPF)。主子问题之间通过可行割进行协调,并以交替迭代的方式获得原问题的解。最后对含有46台火电机组、8个梯级水电厂的IEEE 118节点系统进行计算,测试结果表明所提算法能在较少的时间内获得高质量的解,从而为大规模机组组合问题的求解提供参考。展开更多
本文研究利用基于新能源需求响应的可再生能源集成系统(Renewable Integrated Energy System,RISE)多能源云储能规划,以提高能源系统的效能。构建了多能源云储能模式的基本架构,包括在云储能模式中2个主体交互模型和考虑多能源云储能的...本文研究利用基于新能源需求响应的可再生能源集成系统(Renewable Integrated Energy System,RISE)多能源云储能规划,以提高能源系统的效能。构建了多能源云储能模式的基本架构,包括在云储能模式中2个主体交互模型和考虑多能源云储能的能源集线器结构。在此基础上,设计用户侧充放能优化决策模型并提出相应的求解算法,以优化用户侧充放能。研究发现,在实际应用中,采用这种基于新能源需求响应的多能源云储能规划能够减少能源浪费,提高能源利用率,同时满足用户需求。该研究对推动清洁能源的可持续发展、提高能源系统的智能化水平具有重要意义。展开更多
The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results...The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.展开更多
文摘针对传统机组组合研究中因模型不够完善、约束过于简化而引起的计算准确度低和系统安全性差的缺陷,建立了考虑潮流方程和水电精确出力的水火机组组合(hydrothermal unit commitment,HTUC)模型。围绕该模型,文中首先采用广义Benders分解算法将其划分为一个混合整数线性规划主问题和一个非线性规划子问题;然后将该子问题按时段进一步分解为T个规模较小的子问题,T为调度周期。其中,主问题对应于传统的水火联合调度(hydrothermal scheduling,HTS),子问题则是包含电压、无功等变量的约束潮流(constrained power flow,CPF)。主子问题之间通过可行割进行协调,并以交替迭代的方式获得原问题的解。最后对含有46台火电机组、8个梯级水电厂的IEEE 118节点系统进行计算,测试结果表明所提算法能在较少的时间内获得高质量的解,从而为大规模机组组合问题的求解提供参考。
文摘本文研究利用基于新能源需求响应的可再生能源集成系统(Renewable Integrated Energy System,RISE)多能源云储能规划,以提高能源系统的效能。构建了多能源云储能模式的基本架构,包括在云储能模式中2个主体交互模型和考虑多能源云储能的能源集线器结构。在此基础上,设计用户侧充放能优化决策模型并提出相应的求解算法,以优化用户侧充放能。研究发现,在实际应用中,采用这种基于新能源需求响应的多能源云储能规划能够减少能源浪费,提高能源利用率,同时满足用户需求。该研究对推动清洁能源的可持续发展、提高能源系统的智能化水平具有重要意义。
基金Project(50975053) supported by the National Natural Science Foundation of China
文摘The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.