All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal fac...All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal face of mine No. 2 at Yongquan with a daily output of 2. 000t/d is up to 66-72m2/min. Special gas emission phenomena such as gas blowout, gas and coal outburst etc. have occurred at some faces, which threatens the safe production of face. obstructs the growth of productivity and limits the full play of mechanized equipment.In this paper, gas at face is divided, according to its origin, into three constituents, namely , coming from the coal wall, mined coal and goaf;and a formula for calculation is given. Also , the characteristics of the variation of gas emission at coal face, and the influence of mining sequence of a group of seams and supplied air quantity on the gas emission are discussed. Furthermore . based on the regularity of gas emission at coal face from the above three sources, and on the experiences of years, three principles on controlling gas emission at coal face are presented, that are managing the gas on classification basis, harnessing each source separately and comprehensive prevention and control. Finally, technical measures for prevention and treatment of the accumulation of gas in the upper corner of face, at the working place of coal-winning machine and in the bottom trough of conveyor are introduced.展开更多
By the application of life cycle assessment(LCA) methodology, this paper estimates the environmental impacts of production and disposal of traction motors used in electric vehicles in China. The results show that the ...By the application of life cycle assessment(LCA) methodology, this paper estimates the environmental impacts of production and disposal of traction motors used in electric vehicles in China. The results show that the total energy use, the criteria emissions and the greenhouse gases(GHG) emissions of a traction motor production and disposal are about 2,899,MJ, 4.5,kg and 259.5,kg per motor, respectively. Among the regulated emissions, the SOxemission ranks first by total mass, followed by CO, PM10, NOx, PM2.5, and volatile organic compound(VOC). The motor material production stage accounts for most of the energy consumption and emissions, followed by the assembly stage and the end-of-life disposal stage. In this study, the environmental performance analysis is extended to the comparison between the use of secondary material and primary material for the material production stage. It is found that using 100% secondary material results in a 52.9% reduction in energy consumption, a 49.8% reduction in regulated emissions, and a 49.3% reduction in GHG emissions compared with the use of 100% primary material.展开更多
In this paper the analysis is presented on the economic performance of the electrical equipment industry in 2010.Substantial increase was seen in both the economic aggregate indices such as production and sales,and ec...In this paper the analysis is presented on the economic performance of the electrical equipment industry in 2010.Substantial increase was seen in both the economic aggregate indices such as production and sales,and economic efficiency indices such as profits.Increase of indices that reflect foreign trade situation of the industry,such as import volume,export volume,gross import and export volume,and export delivery volume were prominent in particular.The industry has completely stepped out of the "negative growth" predicament in 2009,comprehensively outperformed the level in 2008,and recovered true growth.The economic situation of the electrical equipment industry in 2011 is also predicted in this paper.展开更多
文摘All the underground coal mines in China are gassy mines. The gas emission at coal face increasingly grows with the increase of working depth and coal output, for example, the gas emission at a full mechanized coal face of mine No. 2 at Yongquan with a daily output of 2. 000t/d is up to 66-72m2/min. Special gas emission phenomena such as gas blowout, gas and coal outburst etc. have occurred at some faces, which threatens the safe production of face. obstructs the growth of productivity and limits the full play of mechanized equipment.In this paper, gas at face is divided, according to its origin, into three constituents, namely , coming from the coal wall, mined coal and goaf;and a formula for calculation is given. Also , the characteristics of the variation of gas emission at coal face, and the influence of mining sequence of a group of seams and supplied air quantity on the gas emission are discussed. Furthermore . based on the regularity of gas emission at coal face from the above three sources, and on the experiences of years, three principles on controlling gas emission at coal face are presented, that are managing the gas on classification basis, harnessing each source separately and comprehensive prevention and control. Finally, technical measures for prevention and treatment of the accumulation of gas in the upper corner of face, at the working place of coal-winning machine and in the bottom trough of conveyor are introduced.
基金Supported by National High Technology Research and Development Program of China("863"Program,No.2011AA11A288)
文摘By the application of life cycle assessment(LCA) methodology, this paper estimates the environmental impacts of production and disposal of traction motors used in electric vehicles in China. The results show that the total energy use, the criteria emissions and the greenhouse gases(GHG) emissions of a traction motor production and disposal are about 2,899,MJ, 4.5,kg and 259.5,kg per motor, respectively. Among the regulated emissions, the SOxemission ranks first by total mass, followed by CO, PM10, NOx, PM2.5, and volatile organic compound(VOC). The motor material production stage accounts for most of the energy consumption and emissions, followed by the assembly stage and the end-of-life disposal stage. In this study, the environmental performance analysis is extended to the comparison between the use of secondary material and primary material for the material production stage. It is found that using 100% secondary material results in a 52.9% reduction in energy consumption, a 49.8% reduction in regulated emissions, and a 49.3% reduction in GHG emissions compared with the use of 100% primary material.
文摘In this paper the analysis is presented on the economic performance of the electrical equipment industry in 2010.Substantial increase was seen in both the economic aggregate indices such as production and sales,and economic efficiency indices such as profits.Increase of indices that reflect foreign trade situation of the industry,such as import volume,export volume,gross import and export volume,and export delivery volume were prominent in particular.The industry has completely stepped out of the "negative growth" predicament in 2009,comprehensively outperformed the level in 2008,and recovered true growth.The economic situation of the electrical equipment industry in 2011 is also predicted in this paper.