Two catalyzed-birth models of n-species (n ≥ 2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Ak^m and Af^m of...Two catalyzed-birth models of n-species (n ≥ 2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Ak^m and Af^m of the same species with the rate kernels Km(k,j)= Kmkj (m = 1, 2,... ,n, n ≥ 2), and aggregates of A^n species catalyze a monomer-birth of A^l species (l = 1, 2 , n - 1) with the catalysis rate kernel Jl(k,j) -Jlkj^v. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution ak^l(t) of A^l species depends crucially on the value of the catalysis rate parameter v: (i) ak^l(t) obeys the conventional scaling law in the case of v ≤ 0, (ii) ak^l(t) satisfies a modified scaling form in the case of v 〉 0. In the second model, the mechanism of monomer-birth of An-species catalyzed by A^l species is added on the basis of the first model, that is, the aggregates of A^l and A^n species catalyze each other to cause monomer-birth. The kinetic behaviors of A^l and A^n species are found to fall into two categories for the different v: (i) growth obeying conventional scaling form with v ≤ 0, (ii) gelling at finite time with v 〉 0.展开更多
We propose an aggregation model of a two-species system to mimic the growth of cities' population and assets, in which irreversible coagulation reactions and exchange reactions occur between any two aggregates of th...We propose an aggregation model of a two-species system to mimic the growth of cities' population and assets, in which irreversible coagulation reactions and exchange reactions occur between any two aggregates of the same species, and the monomer-birth reactions of one species occur by the catalysis Of the other species. In the case with population-catalyzed birth of assets, the rate kernel of an asset aggregate Bκ of size k grows to become an aggregate Bκ+1 through a monomer-birth catalyzed by a population aggregate Aj of size j is J(κ,j) = Jkjλ. And in mutually catalyzed birth model, the birth rate kernels of population and assets are H(k,j)=Hkjη and J(k,j) = Jkjλ, respectively. The kinetics of the system is investigated based on the mean-field theory. In the model of population-catalyzed birth of aseets, the long-time asymptotic behavior of the assets aggregate size distribution obeys the conventional or modified scaling form. In mutually catalyzed birth system, the asymptotic behaviors of population and assets obey the conventional scaling form in the case of η=λ =0, and they obey the modified scaling form in the case of η=0, λ=1. In the case of η = λ= 1, the total mass of population aggregates and that of asset aggregates both grow much faster than those in population-catalyzed birth of assets model, and they approaches to infinite values in finite time.展开更多
The article considers the econophysical analysis of the relationship between monopoly and competition by using the methods, terms of physics. And it was investigated the philosophy of progress. It has been shown that ...The article considers the econophysical analysis of the relationship between monopoly and competition by using the methods, terms of physics. And it was investigated the philosophy of progress. It has been shown that in the transition from absolute monopoly to imperfect monopoly, the system becomes more complex, and its output characteristics depend on time, because monopoly is a natural, competitive is derivative process. Competition is created as a result of the interaction of at least two ~monopoly firms" through the ~market field" that they create to increase the production which is necessary of non-linear products over time. To do this, it is sufficient to have a multitude of firms interacting with each other under the influence force of ~market field". To create the necessary conditions, it is sufficient to have a high level of university education and a legal field for competition and unbreakable antitrust legislation. By acquiring technology and creating conditions for competition in the market, it is possible to achieve progress even without having a strong science. The term ~progress" has received a new content and is defined as the value of a numerically equal increase in the rate of production per unit time or production per squared time. It has been shown that the relationship between monopoly and competition is very simple and there is no contradiction between them. Initially, the market is born as a monopoly, and then analogical firms were created, competition between firms begins展开更多
The bioleaching of pyrrhotite was investigated using Sulfobacillus thermosulfidooxidans.The effects of pH,pulp concentration,inoculation amount,external addition of ferrous and ferric ions were examined.The pH is foun...The bioleaching of pyrrhotite was investigated using Sulfobacillus thermosulfidooxidans.The effects of pH,pulp concentration,inoculation amount,external addition of ferrous and ferric ions were examined.The pH is found to exert a profound effect on the leaching process for controlling the bacterial activity and precipitation of ferric ions mainly as jarosite.The results show that low pulp content increases the leaching rate of iron.The inoculation amount from 1×107 cell/mL to 1×108 cell/mL has positive effects on the leaching rate.The results also imply that addition of ferrous sulfate(1 g/L) is required for the bacteria to efficiently drive the extraction of iron,however,the leaching efficiency has no obvious enhancement when 2 g/L ferrous sulfate was added.Comparatively,addition of ferric sulfate(2 g/L) significantly inhibits the bioleaching process.At the end of bioleaching,jarosite and sulfur are observed on the surface of pyrrhotite residues by using XRD and SEM.With the passivation film formed by jarosite and sulfur,the continuous iron extraction is effectively blocked.展开更多
Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrr...Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.展开更多
In order to improve the efficiency of bioleaching heavy metal from the contaminated soil using Penicillium chrysogenum(P.chrysogenum),experiment was conducted to evaluate the influence of heavy metal stress on P.chrys...In order to improve the efficiency of bioleaching heavy metal from the contaminated soil using Penicillium chrysogenum(P.chrysogenum),experiment was conducted to evaluate the influence of heavy metal stress on P.chrysogenum during bioleaching.The morphology and physiology of P.chrysogenum were observed.Assuming that the heavy metals are all leached out from the experiment soil,heavy metals are added into the agar medium by simulating the heavy metal content in the soil.It is concluded that the survivable heavy metal contaminated soil mass range for P.chrysogenum is 2.5-5.0 g.As for biomass determination,the contaminated soil is added into the liquid medium directly.The soil mass that P.chrysogenum can be survivable is in the range of 2.5-8.75 g.In this mass range,the biomass of P.chrysogenum is bigger than that of the control sample.10 g soil mass is the threshold of the growth of P.chrysogenum.102.2 mg/L gluconic acid,156.4 mg/L oxalic acid,191.6 mg/L pyruvic acid,0.02 mg/L citric acid,0.03 mg/L malic acid and 70.6 mg/L succinic acid are determined after 15 d bioleaching.The mycelium is broken into fragments,and heavy metals are adsorbed on the cell wall or transported into the cytoplasm during bioleaching.The GOD activity declines from 1.08 U/mL to 0.2 U/mL under 400 mg/L of multi-metal stress.The influence of Pb on GOD activity is bigger than that of Cr and Cd,and the GOD activity is not influenced apparently by Mn,Zn and Cu.展开更多
Some complete variational formulas and approximation theorems for the first eigenvalue of elliptic operators in dimension one or a class of Markov chains are presented.
We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both the array ...We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both the array and time axes. Because of the large dimension of the antenna array in massive MIMO systems, the spherical wave-front is assumed to characterize near-field effects resulting in angle of arrival (AoA) shifts and Doppler frequency variations on the antenna array. Additionally, a novel visibility region method is proposed to capture the non-stationary properties of clusters at the receiver side. Combined with the birth-death process, a novel cluster evolution algorithm is proposed. The impacts of cluster evolution and the spherical wave-front assumption on the statistical properties of the channel model are investigated. Meanwhile, corresponding to the theoretical model, a simulation model with a finite number of rays that capture channel characteristics as accurately as possible is proposed. Finally, numerical analysis shows that our proposed non-stationary channel model is effective in capturing the characteristics of a massive MIMO channel.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10275048 and 10305009 and the Natural Science Foundation of Zhejiang Province of China under Grant No. 102067
文摘Two catalyzed-birth models of n-species (n ≥ 2) aggregates with exchange-driven growth processes are proposed and compared. In the first one, the exchange reaction occurs between any two aggregates Ak^m and Af^m of the same species with the rate kernels Km(k,j)= Kmkj (m = 1, 2,... ,n, n ≥ 2), and aggregates of A^n species catalyze a monomer-birth of A^l species (l = 1, 2 , n - 1) with the catalysis rate kernel Jl(k,j) -Jlkj^v. The kinetic behaviors are investigated by means of the mean-field theory. We find that the evolution behavior of aggregate-size distribution ak^l(t) of A^l species depends crucially on the value of the catalysis rate parameter v: (i) ak^l(t) obeys the conventional scaling law in the case of v ≤ 0, (ii) ak^l(t) satisfies a modified scaling form in the case of v 〉 0. In the second model, the mechanism of monomer-birth of An-species catalyzed by A^l species is added on the basis of the first model, that is, the aggregates of A^l and A^n species catalyze each other to cause monomer-birth. The kinetic behaviors of A^l and A^n species are found to fall into two categories for the different v: (i) growth obeying conventional scaling form with v ≤ 0, (ii) gelling at finite time with v 〉 0.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10275048 and 10175008, and the Natural Science Foundation of Zhejiang Province of China under Grant No. 102067
文摘We propose an aggregation model of a two-species system to mimic the growth of cities' population and assets, in which irreversible coagulation reactions and exchange reactions occur between any two aggregates of the same species, and the monomer-birth reactions of one species occur by the catalysis Of the other species. In the case with population-catalyzed birth of assets, the rate kernel of an asset aggregate Bκ of size k grows to become an aggregate Bκ+1 through a monomer-birth catalyzed by a population aggregate Aj of size j is J(κ,j) = Jkjλ. And in mutually catalyzed birth model, the birth rate kernels of population and assets are H(k,j)=Hkjη and J(k,j) = Jkjλ, respectively. The kinetics of the system is investigated based on the mean-field theory. In the model of population-catalyzed birth of aseets, the long-time asymptotic behavior of the assets aggregate size distribution obeys the conventional or modified scaling form. In mutually catalyzed birth system, the asymptotic behaviors of population and assets obey the conventional scaling form in the case of η=λ =0, and they obey the modified scaling form in the case of η=0, λ=1. In the case of η = λ= 1, the total mass of population aggregates and that of asset aggregates both grow much faster than those in population-catalyzed birth of assets model, and they approaches to infinite values in finite time.
文摘The article considers the econophysical analysis of the relationship between monopoly and competition by using the methods, terms of physics. And it was investigated the philosophy of progress. It has been shown that in the transition from absolute monopoly to imperfect monopoly, the system becomes more complex, and its output characteristics depend on time, because monopoly is a natural, competitive is derivative process. Competition is created as a result of the interaction of at least two ~monopoly firms" through the ~market field" that they create to increase the production which is necessary of non-linear products over time. To do this, it is sufficient to have a multitude of firms interacting with each other under the influence force of ~market field". To create the necessary conditions, it is sufficient to have a high level of university education and a legal field for competition and unbreakable antitrust legislation. By acquiring technology and creating conditions for competition in the market, it is possible to achieve progress even without having a strong science. The term ~progress" has received a new content and is defined as the value of a numerically equal increase in the rate of production per unit time or production per squared time. It has been shown that the relationship between monopoly and competition is very simple and there is no contradiction between them. Initially, the market is born as a monopoly, and then analogical firms were created, competition between firms begins
基金Project(2010CB630903) supported by the National Basic Research Program of China
文摘The bioleaching of pyrrhotite was investigated using Sulfobacillus thermosulfidooxidans.The effects of pH,pulp concentration,inoculation amount,external addition of ferrous and ferric ions were examined.The pH is found to exert a profound effect on the leaching process for controlling the bacterial activity and precipitation of ferric ions mainly as jarosite.The results show that low pulp content increases the leaching rate of iron.The inoculation amount from 1×107 cell/mL to 1×108 cell/mL has positive effects on the leaching rate.The results also imply that addition of ferrous sulfate(1 g/L) is required for the bacteria to efficiently drive the extraction of iron,however,the leaching efficiency has no obvious enhancement when 2 g/L ferrous sulfate was added.Comparatively,addition of ferric sulfate(2 g/L) significantly inhibits the bioleaching process.At the end of bioleaching,jarosite and sulfur are observed on the surface of pyrrhotite residues by using XRD and SEM.With the passivation film formed by jarosite and sulfur,the continuous iron extraction is effectively blocked.
基金Project(2010CB630903) supported by the National Basic Research Program of ChinaProject(51374249) supported by the National Natural Science Foundation of China
文摘Bioleaching and electrochemical experiments were conducted to evaluate pyrrhotite dissolution in the presence of pure L.ferriphilum and mixed culture of L. ferriphilum and A. caldus. The results indicate that the pyrrhotite oxidation behavior is the preferential dissolution of iron accompanied with the massive formation of sulfur in the presence of L. ferriphilum, which significantly hinders the leaching efficiency. Comparatively, the leaching rate of pyrrhotite distinctly increases by 68% in the mixed culture of L. ferriphilum and A. caldus at the 3rd day. But, the accumulated ferric ions and high p H value produced by bioleaching process can give rise to the rapid formation of jarosite, which is the primary passivation film blocking continuous iron extraction during bioleaching by the mixed culture. The addition of A. caldus during leaching by L. ferriphilum can accelerate the oxidation rate of pyrrhotite, but not change the electrochemical oxidation mechanisms of pyrrhotite. XRD and SEM/EDS analyses as well as electrochemical study confirm the above conclusions.
基金Project(50925417)supported by the National Natural Science Foundation of China for Distinguished Young ScholarsProject(51074191)supported by the National Natural Science Foundation of ChinaProject(2012BAC09B04)supported by the National Key Technology Research and Development Program of China
文摘In order to improve the efficiency of bioleaching heavy metal from the contaminated soil using Penicillium chrysogenum(P.chrysogenum),experiment was conducted to evaluate the influence of heavy metal stress on P.chrysogenum during bioleaching.The morphology and physiology of P.chrysogenum were observed.Assuming that the heavy metals are all leached out from the experiment soil,heavy metals are added into the agar medium by simulating the heavy metal content in the soil.It is concluded that the survivable heavy metal contaminated soil mass range for P.chrysogenum is 2.5-5.0 g.As for biomass determination,the contaminated soil is added into the liquid medium directly.The soil mass that P.chrysogenum can be survivable is in the range of 2.5-8.75 g.In this mass range,the biomass of P.chrysogenum is bigger than that of the control sample.10 g soil mass is the threshold of the growth of P.chrysogenum.102.2 mg/L gluconic acid,156.4 mg/L oxalic acid,191.6 mg/L pyruvic acid,0.02 mg/L citric acid,0.03 mg/L malic acid and 70.6 mg/L succinic acid are determined after 15 d bioleaching.The mycelium is broken into fragments,and heavy metals are adsorbed on the cell wall or transported into the cytoplasm during bioleaching.The GOD activity declines from 1.08 U/mL to 0.2 U/mL under 400 mg/L of multi-metal stress.The influence of Pb on GOD activity is bigger than that of Cr and Cd,and the GOD activity is not influenced apparently by Mn,Zn and Cu.
基金This work was supported in part bythe National Natural Science Foundation of China (Grant No. 19631060) Mathematical Tian Yuan Foundation, Qiu Shi Science & Technology Foundation, RFDP and MCEC.
文摘Some complete variational formulas and approximation theorems for the first eigenvalue of elliptic operators in dimension one or a class of Markov chains are presented.
基金Project supported by the National Natural Science Foundation of China (No. 61421061) and the Huawei Innovation Research Program
文摘We propose a novel channel model for massive multiple-input multiple-out (MIMO) communication systems that incorporate the spherical wave-front assumption and non-stationary properties of clusters on both the array and time axes. Because of the large dimension of the antenna array in massive MIMO systems, the spherical wave-front is assumed to characterize near-field effects resulting in angle of arrival (AoA) shifts and Doppler frequency variations on the antenna array. Additionally, a novel visibility region method is proposed to capture the non-stationary properties of clusters at the receiver side. Combined with the birth-death process, a novel cluster evolution algorithm is proposed. The impacts of cluster evolution and the spherical wave-front assumption on the statistical properties of the channel model are investigated. Meanwhile, corresponding to the theoretical model, a simulation model with a finite number of rays that capture channel characteristics as accurately as possible is proposed. Finally, numerical analysis shows that our proposed non-stationary channel model is effective in capturing the characteristics of a massive MIMO channel.