The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which ...The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which affect the quantity and quality of products.To improve the aluminum recovery process,the leaching kinetics of CMW with hydrochloric acid was studied.A shrinking core model was used to investigate aluminum and iron dissolution kinetics.Based on the kinetic characteristics,a process for recovering aluminum was proposed and tested experimentally.It is found that the aluminum leaching reaction is controlled by surface reaction at low temperatures(40-80℃) and by diffusion process at higher temperatures(90-106℃).The iron dissolution process is dominated by surface reaction at 40-100℃.The results show that iron could be dissolved or separated by concentrated hydrochloric acid.Fine grinding will improve aluminum dissolution significantly.展开更多
Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during...Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.展开更多
基金Supported by the National High Technology Research and Development Program of China(2011AA06A103)the National Natural Science Foundation of China(21306109)
文摘The extrartion of aluminum from coal mining waste(CMW) is an important industrial process.The two major problems in applications are low aluminum dissolution efficiency and high iron content in the raw material,which affect the quantity and quality of products.To improve the aluminum recovery process,the leaching kinetics of CMW with hydrochloric acid was studied.A shrinking core model was used to investigate aluminum and iron dissolution kinetics.Based on the kinetic characteristics,a process for recovering aluminum was proposed and tested experimentally.It is found that the aluminum leaching reaction is controlled by surface reaction at low temperatures(40-80℃) and by diffusion process at higher temperatures(90-106℃).The iron dissolution process is dominated by surface reaction at 40-100℃.The results show that iron could be dissolved or separated by concentrated hydrochloric acid.Fine grinding will improve aluminum dissolution significantly.
基金Financial support by the Austrian Federal Government (in particular from Bundesministerium für Verkehr, Innovation und Technologie and Bundesministerium für Wirtschaft, Familie und Jugend) represented by sterreichische Forschungsfrderungsgesellschaft mbHthe Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsfrderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme is gratefully acknowledged
文摘Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.