Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate ox...Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate oxide of a 0.18μm dual gate CMOS process. Voltage ramps (V-ramp) and current ramps (J-ramp) are used to evaluate gate oxide reliability. The thin and thick gate oxides are all evaluated in the accumulation condition. Our experimental results show that the measurement methods affect Vbd only slightly but affect Qbd seriously,as do the measurement conditions.This affects the I-t curves obtained with the J-ramp and V-ramp methods. From the I-t curve,it can be seen that Qbd obtained using a J-ramp is much bigger than that with a V-ramp. At the same time, the Weibull slopes of Qbd are definitely smaller than those of Vbd. This means that Vbd is more reliable than Qbd, Thus we should be careful to use Qbd to evaluate the reliability of 0.18μm or beyond CMOS process gate oxide.展开更多
A unified breakdown model of SOI RESURF device with uniform,step,or linear drift region doping profile is firstly proposed.By the model,the electric field distribution and breakdown voltage are researched in detail fo...A unified breakdown model of SOI RESURF device with uniform,step,or linear drift region doping profile is firstly proposed.By the model,the electric field distribution and breakdown voltage are researched in detail for the step numbers from 0 to infinity.The critic electric field as the function of the geometry parameters and doping profile is derived.For the thick film device,linear doping profile can be replaced by a single or two steps doping profile in the drift region due to a considerable uniformly lateral electric field,almost ideal breakdown voltage,and simplified design and fabrication.The availability of the proposed model is verified by the good accordance among the analytical results,numerical simulations,and reported experiments.展开更多
As the thickness of an SOI layer varies,a minimum breakdown voltage is reached when the thickness is about 2μm. The vertical electric field of the SOI LDMOS with a drift region which is vertically linearly graded is ...As the thickness of an SOI layer varies,a minimum breakdown voltage is reached when the thickness is about 2μm. The vertical electric field of the SOI LDMOS with a drift region which is vertically linearly graded is constant. The vertically linearly graded concentration drift can be achieved by impurity implanting followed by thermal diffusion. In this way,the vertical breakdown voltage of SOI LDMOS with 2μm thickness SOI layer can be improved by 43%. The on-state resistance is lowered by 24 % because of the higher impurity concentration of the SOI surface.展开更多
A substrate hot holes injection method is used to quantitatively examine the roles of electrons and holes separately in thin gate oxides breakdown.The shift of threshold voltage under different stress is discussed.It ...A substrate hot holes injection method is used to quantitatively examine the roles of electrons and holes separately in thin gate oxides breakdown.The shift of threshold voltage under different stress is discussed.It is indicated that positive charges are trapped in SiO 2 while hot electrons are necessary for SiO 2 breakdown.The anode holes injection model and the electron traps generation model is linked into a consistent model,describing the oxide wearout as an electron correlated holes trap creation process.The results show that the limiting factor in thin gate oxides breakdown depends on the balance between the amount of injected hot electrons and holes.The gate oxides breakdown is a two step process.The first step is hot electron's breaking Si-O bonds and producing some dangling bonds to be holes traps.Then the holes are trapped and a conducted path is produced in the oxides.The joint effect of hot electrons and holes makes the thin gate oxides breakdown complete.展开更多
This report describes an equivalent doping profile transformation method with which the avalanche breakdown voltage of the asymmetric linearly graded junction was analytically predicted.The maximum breakdown voltage a...This report describes an equivalent doping profile transformation method with which the avalanche breakdown voltage of the asymmetric linearly graded junction was analytically predicted.The maximum breakdown voltage and the different depletion layer extension on the diffused side and substrate side are demonstrated in the report.The report shows the equivalent doping profile method is valid to predict the breakdown voltage of the complex P N junction.The analytical results agree with the experimental breakdown voltage in comparison with the abrupt junction and symmetric linearly graded junction approximations.展开更多
A novel 2D analytical model for the doping profile of the bulk silicon RESURF LDMOS drift region is proposed. According to the proposed model, to obtain good performance, the doping profile in the total drift region o...A novel 2D analytical model for the doping profile of the bulk silicon RESURF LDMOS drift region is proposed. According to the proposed model, to obtain good performance, the doping profile in the total drift region of a RESURF LDMOS with a field plate should be piecewise linearly graded. The breakdown voltage of the proposed RESURF LDMOS with a piecewise linearly graded doping drift region is improved by 58. 8%, and the specific on-resistance is reduced by 87. 4% compared with conventional LDMOS. These results are verified by the two-dimensional process simulator Tsuprem-4 and the device simulator Medici.展开更多
Nitrogen implantation in silicon substrate at fixed energy of 35keV and split dose of 10 14~5×10 14cm -2 is performed before gate oxidation.The experiment results indicate that with the increasing of implanta...Nitrogen implantation in silicon substrate at fixed energy of 35keV and split dose of 10 14~5×10 14cm -2 is performed before gate oxidation.The experiment results indicate that with the increasing of implantation dose of nitrogen,oxidation rate of gate decreases.The retardation in oxide growth is weakened due to thermal annealing after nitrogen implantation.After nitrogen is implanted at the dose of 2×10 14cm -2,initial O 2 injection method which is composed of an O 2 injection/N 2 annealing/main oxidation,is applied for preparation of 3 4nm gate oxide.Compared with the control process,which is composed of N 2 annealing/main oxidation,initial O 2 injection process suppresses leakage current of the gate oxide.But Q bd and HF C-V characteristics are almost identical for the samples fabricated by two different oxidation processes.展开更多
Asymmetric doping channel (AC) partially depleted (PD) silicon-on-insulator (SOI) devices are simulated using two-dimensional simulation software. The electrical characteristics such as the output characteristic...Asymmetric doping channel (AC) partially depleted (PD) silicon-on-insulator (SOI) devices are simulated using two-dimensional simulation software. The electrical characteristics such as the output characteristics and the breakdown voltage are studied in detail. Through simulations,it is found that the AC PD SOI device can suppress the floating effects and improve the breakdown characteristics over conventional partially depleted silicon-on-insulator devices. Also compared to the reported AC FD SOI device,the performance variation with device parameters is more predictable and operable in industrial applications. The AC FD SO1 device has thinner silicon film, which causes parasitical effects such as coupling effects between the front gate and the back gate and hot electron degradation effects.展开更多
Some experimental investigations were carried out with the samples of metal Al and AlCl3 solutions. It is found that the spectrum varies with the change of experimental setup parameters both in Al bulk material and Al...Some experimental investigations were carried out with the samples of metal Al and AlCl3 solutions. It is found that the spectrum varies with the change of experimental setup parameters both in Al bulk material and AlCl3 solutions. The temporal evolution properties and the affection of incident laser energy on the laser-induced breakdown spectroscopy (LIBS) signals were also discussed. The lifetime of laser induced plasma in AlCl3 solutions is found to be about 30 ns which is much shorter than in solid materials. Compared with the solid samples, the Al LIBS signals in AlCl3 solutions require higher laser energy. Under the optimized conditions, the detection limit of Al in AlCl3 solution was determined to be around 1000 ppm for the system we used.展开更多
In design phases, expansion joints are required to have movement capacity, bearing capacity for static and dynamic loading, watertight, low noise emission and traffic safety. On the basis of the fact that failure due ...In design phases, expansion joints are required to have movement capacity, bearing capacity for static and dynamic loading, watertight, low noise emission and traffic safety. On the basis of the fact that failure due to dynamic loading is the main reason for the observed damages, attention is focused on the bearing capacity for dynamic loading governed by impact, because it differs from the static loading. In this study, from the viewpoint of durability, experimental studies for dynamic behavior were conducted for aluminium alloy expansion joints with perforated dowels. The validity of the perforated dowels against traffic impact loading was confirmed by both experimental and numerical studies.展开更多
Breakdown formation in an explosive-emission electron source is related to the interelectrode gap filling with plasma propagating from the cathode and formed at the anode and in the interelectrode gap under the electr...Breakdown formation in an explosive-emission electron source is related to the interelectrode gap filling with plasma propagating from the cathode and formed at the anode and in the interelectrode gap under the electron beam action. Plasma anode is used to increase the beam current density. Preliminary interelectrode gap filling with plasma in the explosive-emission source decreases the influence of uncontrolled plasma arrival from the anode on the diode processes, promotes current density increase and duration of generated electron beams. The paper considers the influence of the cathode geometry on the breakdown formation in the plasma-anode explosive-emission electron source. The data on obtaining of microsecond electron beams with current density of 30 A/cm^2 and 1.5-2 kA/cm^2 are presented.展开更多
The effects of the ambient air pressure level on the performance of plasma synthetic jet actuator have been investigated through electrical and optical diagnostics.Pressures from 1 atm down to 0.1 atm were tested with...The effects of the ambient air pressure level on the performance of plasma synthetic jet actuator have been investigated through electrical and optical diagnostics.Pressures from 1 atm down to 0.1 atm were tested with a 10 Hz excitation.The discharge measurement demonstrates that there is a voltage range to make the actuator work reliably.Higher pressure level needs a higher breakdown voltage,and a higher discharge current and energy deposition are produced.But when the actuator works with the maximum breakdown voltage,the fraction of the initial capacitor energy delivered to the arc is almost invariable.This preliminary study also confirms the effectiveness of the plasma synthetic jet at low pressure.Indeed,the maximum velocities of the precursor shock and the plasma jet induced by the actuator with maximum breakdown voltage are independent of the ambient pressure level;reach about 530 and 460 m/s respectively.The mass flux of the plasma jet increases with ambient pressure increasing,but the strength of the precursor shock presents a local maximum at 0.6 atm.展开更多
Ferroelectric polymers are the mainstay of advanced flexible electronic devices.How to tailor the ferroelectric polymer films for various applications via simple processing approaches is challenging.Here we demonstrat...Ferroelectric polymers are the mainstay of advanced flexible electronic devices.How to tailor the ferroelectric polymer films for various applications via simple processing approaches is challenging.Here we demonstrate the tuning of ferroelectric responses can be achieved in polymer blends of poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE))and polymethyl methacrylate(PMMA)prepared via a simple two-step process.The proposed two-step process endows the polymer blends with a random distribution of P(VDF-TrFE)crystalline phase,hence decoupling the coherent ferroelectric domain interactions between continuous ordered crystalline phases that ubiquitously existed in common P(VDF-TrFE)film.The incorporation of the miscible non-crystalline PMMA chains with low-polarity results in reversal dipoles and a transition from ferroelectric to antiferroelectric-like behavior,overcoming the trade-off between the polarization and depolarization fields.In particular,resultant excellent mechanical and electrical properties of the polymer blend films give rise to remarkably improved breakdown strength and energy storage performance,surpassing P(VDF-TrFE)and commercial biaxial-oriented polypropylene films.This work provides a simple and effective strategy to tailor the ferroelectric response of polymeric materials with great potential for flexible electrical energy storage applications.展开更多
Penetrating cerebral injuries caused by foreign bodies are rare in civilian neurosurgical trauma, al- though there are various reports of blast or gunshot injuries in warfare due to multiple foreign bodies like pellet...Penetrating cerebral injuries caused by foreign bodies are rare in civilian neurosurgical trauma, al- though there are various reports of blast or gunshot injuries in warfare due to multiple foreign bodies like pellets and nails. In our case, a 30-year-old man presented to neurosurgery clinic with signs and symptoms of right-sided weakness after suicide bomb attack. The skull X-ray showed a single intracranial nail. Small craniotomy was done and the nail was removed with caution to avoid injury to surrounding normal brain tissue. At 6 months' follow-up his right- sided power improved to against gravity.展开更多
文摘Breakdown voltage (Vbd) and charge to breakdown (Qbd) are two parameters often used to evaluate gate oxide reliability. In this paper,we investigate the effects of measurement methods on Vbd and Qbd of the gate oxide of a 0.18μm dual gate CMOS process. Voltage ramps (V-ramp) and current ramps (J-ramp) are used to evaluate gate oxide reliability. The thin and thick gate oxides are all evaluated in the accumulation condition. Our experimental results show that the measurement methods affect Vbd only slightly but affect Qbd seriously,as do the measurement conditions.This affects the I-t curves obtained with the J-ramp and V-ramp methods. From the I-t curve,it can be seen that Qbd obtained using a J-ramp is much bigger than that with a V-ramp. At the same time, the Weibull slopes of Qbd are definitely smaller than those of Vbd. This means that Vbd is more reliable than Qbd, Thus we should be careful to use Qbd to evaluate the reliability of 0.18μm or beyond CMOS process gate oxide.
文摘A unified breakdown model of SOI RESURF device with uniform,step,or linear drift region doping profile is firstly proposed.By the model,the electric field distribution and breakdown voltage are researched in detail for the step numbers from 0 to infinity.The critic electric field as the function of the geometry parameters and doping profile is derived.For the thick film device,linear doping profile can be replaced by a single or two steps doping profile in the drift region due to a considerable uniformly lateral electric field,almost ideal breakdown voltage,and simplified design and fabrication.The availability of the proposed model is verified by the good accordance among the analytical results,numerical simulations,and reported experiments.
文摘As the thickness of an SOI layer varies,a minimum breakdown voltage is reached when the thickness is about 2μm. The vertical electric field of the SOI LDMOS with a drift region which is vertically linearly graded is constant. The vertically linearly graded concentration drift can be achieved by impurity implanting followed by thermal diffusion. In this way,the vertical breakdown voltage of SOI LDMOS with 2μm thickness SOI layer can be improved by 43%. The on-state resistance is lowered by 24 % because of the higher impurity concentration of the SOI surface.
文摘A substrate hot holes injection method is used to quantitatively examine the roles of electrons and holes separately in thin gate oxides breakdown.The shift of threshold voltage under different stress is discussed.It is indicated that positive charges are trapped in SiO 2 while hot electrons are necessary for SiO 2 breakdown.The anode holes injection model and the electron traps generation model is linked into a consistent model,describing the oxide wearout as an electron correlated holes trap creation process.The results show that the limiting factor in thin gate oxides breakdown depends on the balance between the amount of injected hot electrons and holes.The gate oxides breakdown is a two step process.The first step is hot electron's breaking Si-O bonds and producing some dangling bonds to be holes traps.Then the holes are trapped and a conducted path is produced in the oxides.The joint effect of hot electrons and holes makes the thin gate oxides breakdown complete.
文摘This report describes an equivalent doping profile transformation method with which the avalanche breakdown voltage of the asymmetric linearly graded junction was analytically predicted.The maximum breakdown voltage and the different depletion layer extension on the diffused side and substrate side are demonstrated in the report.The report shows the equivalent doping profile method is valid to predict the breakdown voltage of the complex P N junction.The analytical results agree with the experimental breakdown voltage in comparison with the abrupt junction and symmetric linearly graded junction approximations.
文摘A novel 2D analytical model for the doping profile of the bulk silicon RESURF LDMOS drift region is proposed. According to the proposed model, to obtain good performance, the doping profile in the total drift region of a RESURF LDMOS with a field plate should be piecewise linearly graded. The breakdown voltage of the proposed RESURF LDMOS with a piecewise linearly graded doping drift region is improved by 58. 8%, and the specific on-resistance is reduced by 87. 4% compared with conventional LDMOS. These results are verified by the two-dimensional process simulator Tsuprem-4 and the device simulator Medici.
文摘Nitrogen implantation in silicon substrate at fixed energy of 35keV and split dose of 10 14~5×10 14cm -2 is performed before gate oxidation.The experiment results indicate that with the increasing of implantation dose of nitrogen,oxidation rate of gate decreases.The retardation in oxide growth is weakened due to thermal annealing after nitrogen implantation.After nitrogen is implanted at the dose of 2×10 14cm -2,initial O 2 injection method which is composed of an O 2 injection/N 2 annealing/main oxidation,is applied for preparation of 3 4nm gate oxide.Compared with the control process,which is composed of N 2 annealing/main oxidation,initial O 2 injection process suppresses leakage current of the gate oxide.But Q bd and HF C-V characteristics are almost identical for the samples fabricated by two different oxidation processes.
文摘Asymmetric doping channel (AC) partially depleted (PD) silicon-on-insulator (SOI) devices are simulated using two-dimensional simulation software. The electrical characteristics such as the output characteristics and the breakdown voltage are studied in detail. Through simulations,it is found that the AC PD SOI device can suppress the floating effects and improve the breakdown characteristics over conventional partially depleted silicon-on-insulator devices. Also compared to the reported AC FD SOI device,the performance variation with device parameters is more predictable and operable in industrial applications. The AC FD SO1 device has thinner silicon film, which causes parasitical effects such as coupling effects between the front gate and the back gate and hot electron degradation effects.
基金This work was supported by Hi-Tech Research and DevelopmentProgram of China (2002AA615170)Natural Science Foundationof Anhui (2001KJ116ZD)Natural Science Foundation ofShandong (Y2006A26)
文摘Some experimental investigations were carried out with the samples of metal Al and AlCl3 solutions. It is found that the spectrum varies with the change of experimental setup parameters both in Al bulk material and AlCl3 solutions. The temporal evolution properties and the affection of incident laser energy on the laser-induced breakdown spectroscopy (LIBS) signals were also discussed. The lifetime of laser induced plasma in AlCl3 solutions is found to be about 30 ns which is much shorter than in solid materials. Compared with the solid samples, the Al LIBS signals in AlCl3 solutions require higher laser energy. Under the optimized conditions, the detection limit of Al in AlCl3 solution was determined to be around 1000 ppm for the system we used.
文摘In design phases, expansion joints are required to have movement capacity, bearing capacity for static and dynamic loading, watertight, low noise emission and traffic safety. On the basis of the fact that failure due to dynamic loading is the main reason for the observed damages, attention is focused on the bearing capacity for dynamic loading governed by impact, because it differs from the static loading. In this study, from the viewpoint of durability, experimental studies for dynamic behavior were conducted for aluminium alloy expansion joints with perforated dowels. The validity of the perforated dowels against traffic impact loading was confirmed by both experimental and numerical studies.
文摘Breakdown formation in an explosive-emission electron source is related to the interelectrode gap filling with plasma propagating from the cathode and formed at the anode and in the interelectrode gap under the electron beam action. Plasma anode is used to increase the beam current density. Preliminary interelectrode gap filling with plasma in the explosive-emission source decreases the influence of uncontrolled plasma arrival from the anode on the diode processes, promotes current density increase and duration of generated electron beams. The paper considers the influence of the cathode geometry on the breakdown formation in the plasma-anode explosive-emission electron source. The data on obtaining of microsecond electron beams with current density of 30 A/cm^2 and 1.5-2 kA/cm^2 are presented.
基金supported by the National Natural Science Foundation of China(Grant No.11372349)the Foundation for the Author of National Excellent Doctor Dissertation of China(Grant No.201058)the Nature Science Fund for Distinguished Young Scholars of National University of Defense Technology,China(Grant No.CJ110101)
文摘The effects of the ambient air pressure level on the performance of plasma synthetic jet actuator have been investigated through electrical and optical diagnostics.Pressures from 1 atm down to 0.1 atm were tested with a 10 Hz excitation.The discharge measurement demonstrates that there is a voltage range to make the actuator work reliably.Higher pressure level needs a higher breakdown voltage,and a higher discharge current and energy deposition are produced.But when the actuator works with the maximum breakdown voltage,the fraction of the initial capacitor energy delivered to the arc is almost invariable.This preliminary study also confirms the effectiveness of the plasma synthetic jet at low pressure.Indeed,the maximum velocities of the precursor shock and the plasma jet induced by the actuator with maximum breakdown voltage are independent of the ambient pressure level;reach about 530 and 460 m/s respectively.The mass flux of the plasma jet increases with ambient pressure increasing,but the strength of the precursor shock presents a local maximum at 0.6 atm.
基金supported by the Basic Science Center Program of the National Natural Science Foundation of China(51788104)the National Natural Science Foundation of China(51802237,52072280,51872214 and 51872079)+2 种基金the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)the Open Fund of Hubei Key Laboratory of Ferro&Piezoelectric Materials and Devices(K201807)the Fundamental Research Funds for the Central Universities(193201002,183101005 and 182401004)。
文摘Ferroelectric polymers are the mainstay of advanced flexible electronic devices.How to tailor the ferroelectric polymer films for various applications via simple processing approaches is challenging.Here we demonstrate the tuning of ferroelectric responses can be achieved in polymer blends of poly(vinylidene fluoride-trifluoroethylene)(P(VDF-TrFE))and polymethyl methacrylate(PMMA)prepared via a simple two-step process.The proposed two-step process endows the polymer blends with a random distribution of P(VDF-TrFE)crystalline phase,hence decoupling the coherent ferroelectric domain interactions between continuous ordered crystalline phases that ubiquitously existed in common P(VDF-TrFE)film.The incorporation of the miscible non-crystalline PMMA chains with low-polarity results in reversal dipoles and a transition from ferroelectric to antiferroelectric-like behavior,overcoming the trade-off between the polarization and depolarization fields.In particular,resultant excellent mechanical and electrical properties of the polymer blend films give rise to remarkably improved breakdown strength and energy storage performance,surpassing P(VDF-TrFE)and commercial biaxial-oriented polypropylene films.This work provides a simple and effective strategy to tailor the ferroelectric response of polymeric materials with great potential for flexible electrical energy storage applications.
文摘Penetrating cerebral injuries caused by foreign bodies are rare in civilian neurosurgical trauma, al- though there are various reports of blast or gunshot injuries in warfare due to multiple foreign bodies like pellets and nails. In our case, a 30-year-old man presented to neurosurgery clinic with signs and symptoms of right-sided weakness after suicide bomb attack. The skull X-ray showed a single intracranial nail. Small craniotomy was done and the nail was removed with caution to avoid injury to surrounding normal brain tissue. At 6 months' follow-up his right- sided power improved to against gravity.