The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 ...The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.展开更多
By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal...By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal' formula is defined, and then, rich coherent structures canbe found by selecting corresponding functions appropriately.展开更多
Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd ...Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We invest/gate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.展开更多
Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Sch...Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.展开更多
For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivi...For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivity. The advanced stratified line sampling method introduces a set of middle failure subsets firstly. And for each subset, the conventional line sampling can be used to obtain the corresponding value of the response's CDF. At the same time, the sensitivity estimations of each failure subset can also be computed by modifying the important direction and corresponding reliability coefficients. The properties of CDF sensitivity are proved while the performance function is linear with normal random variables. After two simple examples are used to demonstrate the properties of CDF sensitivity and the feasibility of the presented method, the method employed to analyze the CDF and corresponding sensitivity of root bending moment (RBM) responses for the stochastic BAH is wing with gust excitation to a square-edged gust and to a Dryden gust. The results show that the parameters of the second and the fifth order modals exert more influence on the CDF of response than the other ones, and the presented SLS method can more significantly reduce the computational cost compared with Monte Carlo simulation (MCS).展开更多
Pulse dynamics and stability in optical fibers in the presence of both self-steepening and quintic nonlinear effects are analyzed. Propagating profiles of the quintic derivative nonlinear Schr¨odinger model are i...Pulse dynamics and stability in optical fibers in the presence of both self-steepening and quintic nonlinear effects are analyzed. Propagating profiles of the quintic derivative nonlinear Schr¨odinger model are isolated via two invariants of motion. The resulting canonical equation admits exact periodic propagating patterns in terms of the Jacobi elliptic functions, and solitary pulses are recovered in the long wave limit, i.e. degenerate cases of periodic profiles where each pulse is widely separated from the adjacent ones. Two families of such exact wave profiles are identified. The first one has a precise constraint concerning the magnitude of self-steepening and quintic nonlinear effects, while the second one permits more freedom. The reduction to the well established temporal soliton in an optical fiber waveguide in the absence of self-steepening and quintic nonlinearity is demonstrated explicitly. Numerical simulations are performed to identify regimes of parameter values where robust propagation patterns exist.展开更多
In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are hea...In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are heavy-tailed and may not even possess variances or means.The main contribution of this paper is that we establish some oracle inequalities for the inverse problems by using quantile coupling technique that gives a tight bound for the quantile coupling between an arbitrary sample p-quantile and a normal variable,and an automatic selection principle for the nonrandom filters.This leads to the data-driven choice of weights.We also give an algorithm for its implementation.The quantile coupling inequality developed in this paper is of independent interest,because it includes the median coupling inequality in literature as a special case.展开更多
According to a program of Braverman, Kazhdan and NgS, for a large class of split unramified reductive groups G and representations p of the dual group G, the unramified local L-factor L(s, π, ρ) can be expressed a...According to a program of Braverman, Kazhdan and NgS, for a large class of split unramified reductive groups G and representations p of the dual group G, the unramified local L-factor L(s, π, ρ) can be expressed as the trace of π(fρ,s) for a function fρ,s with non-compact support whenever Re(s) ≥ 0. Such a function should have useful interpretations in terms of geometry or eombinatories, and it can be plugged into the trace formula to study certain sums of automorphic L-functions. It also fits into the conjectural framework of Schwartz spaces for reductive monoids due to Sakellaridis, who coined the term basic functions; this is supposed to lead to a generalized Tamagawa-Godement-Jaequet theory for (G, ρ). In this paper, we derive some basic properties for the basic functions fρ,s and interpret them via invariant theory. In particular, their coefficients are interpreted as certain generalized Kostka-Foulkes polynomials defined by Panyushev. These coefficients can be encoded into a rational generating function.展开更多
This paper considers the exponential decay of the solution to a damped semilinear wave equation with variable coefficients in the principal part by Riemannian multiplier method. A differential geometric condition that...This paper considers the exponential decay of the solution to a damped semilinear wave equation with variable coefficients in the principal part by Riemannian multiplier method. A differential geometric condition that ensures the exponential decay is obtained.展开更多
文摘The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We show that if two nonconstant meromorphic functions f(z) and g(z) satisfy δ(0,f)+δ(0,g)+δ(∞,f)+δ(∞,g)=3 or δ 2(0,f)+δ 2(0,g)+δ 2(∞,f)+δ 2(∞,g)=3, and E(1,f)=E(1,g) then f(z),g(z) must be one of five cases.
文摘By using a Baecklund transformation and the multi-linear variable separationapproach, we find a new general solution of a (2+1)-dimensional generalization of the nonlinearSchroedinger system. The new 'universal' formula is defined, and then, rich coherent structures canbe found by selecting corresponding functions appropriately.
基金The project supported by the National Natural Science Foundation of China under Grant No. 10272071, the Natural Science Foundation of Zhejiang Province of China under Grant No. Y504111, and the Science Research Foundation of Huzhou University
文摘Using the variable separation approach, we obtain a general exact solution with arbitrary variable separation functions for the (2+ 1)-dimensional Maccari system. By introducing Jacobi elliptic functions dn and nd in the seed solution, two types of doubly periodic propagating wave patterns are derived. We invest/gate the wave patterns evolution along with the modulus k increasing, many important and interesting properties are revealed.
文摘Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.
基金the National Nature Science Foundation of China (Grant No. 51175425)the Aviation Science Foundation (Grant No. 2011ZA53015)+1 种基金the Aerospace Science and Technology Innovative Foundation (Grant No. 2011200093)the Nature Science Basic Research Fund of Shaanxi Province (Grant No. 2012JQ1015)
文摘For the stochastic structure with stochastic excitation, an advanced stratified line sampling (SLS) method is presented to obtain the cumulative distribution function (CDF) of the structural response and its sensitivity. The advanced stratified line sampling method introduces a set of middle failure subsets firstly. And for each subset, the conventional line sampling can be used to obtain the corresponding value of the response's CDF. At the same time, the sensitivity estimations of each failure subset can also be computed by modifying the important direction and corresponding reliability coefficients. The properties of CDF sensitivity are proved while the performance function is linear with normal random variables. After two simple examples are used to demonstrate the properties of CDF sensitivity and the feasibility of the presented method, the method employed to analyze the CDF and corresponding sensitivity of root bending moment (RBM) responses for the stochastic BAH is wing with gust excitation to a square-edged gust and to a Dryden gust. The results show that the parameters of the second and the fifth order modals exert more influence on the CDF of response than the other ones, and the presented SLS method can more significantly reduce the computational cost compared with Monte Carlo simulation (MCS).
基金Support for this project has been provided by the Research Grants Council General Research Fund contract HKU 711713E
文摘Pulse dynamics and stability in optical fibers in the presence of both self-steepening and quintic nonlinear effects are analyzed. Propagating profiles of the quintic derivative nonlinear Schr¨odinger model are isolated via two invariants of motion. The resulting canonical equation admits exact periodic propagating patterns in terms of the Jacobi elliptic functions, and solitary pulses are recovered in the long wave limit, i.e. degenerate cases of periodic profiles where each pulse is widely separated from the adjacent ones. Two families of such exact wave profiles are identified. The first one has a precise constraint concerning the magnitude of self-steepening and quintic nonlinear effects, while the second one permits more freedom. The reduction to the well established temporal soliton in an optical fiber waveguide in the absence of self-steepening and quintic nonlinearity is demonstrated explicitly. Numerical simulations are performed to identify regimes of parameter values where robust propagation patterns exist.
基金supported by the Major Project of Humanities Social Science Foundation of Ministry of Education(Grant No. 08JJD910247)Key Project of Chinese Ministry of Education (Grant No. 108120)+4 种基金National Natural Science Foundation of China (Grant No. 10871201)Beijing Natural Science Foundation (Grant No. 1102021)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No. 10XNL018)the China Statistical Research Project (Grant No. 2011LZ031)
文摘In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are heavy-tailed and may not even possess variances or means.The main contribution of this paper is that we establish some oracle inequalities for the inverse problems by using quantile coupling technique that gives a tight bound for the quantile coupling between an arbitrary sample p-quantile and a normal variable,and an automatic selection principle for the nonrandom filters.This leads to the data-driven choice of weights.We also give an algorithm for its implementation.The quantile coupling inequality developed in this paper is of independent interest,because it includes the median coupling inequality in literature as a special case.
文摘According to a program of Braverman, Kazhdan and NgS, for a large class of split unramified reductive groups G and representations p of the dual group G, the unramified local L-factor L(s, π, ρ) can be expressed as the trace of π(fρ,s) for a function fρ,s with non-compact support whenever Re(s) ≥ 0. Such a function should have useful interpretations in terms of geometry or eombinatories, and it can be plugged into the trace formula to study certain sums of automorphic L-functions. It also fits into the conjectural framework of Schwartz spaces for reductive monoids due to Sakellaridis, who coined the term basic functions; this is supposed to lead to a generalized Tamagawa-Godement-Jaequet theory for (G, ρ). In this paper, we derive some basic properties for the basic functions fρ,s and interpret them via invariant theory. In particular, their coefficients are interpreted as certain generalized Kostka-Foulkes polynomials defined by Panyushev. These coefficients can be encoded into a rational generating function.
基金Project supported by the National Natural Science Foundation of China (No.60334040, No.60225003).
文摘This paper considers the exponential decay of the solution to a damped semilinear wave equation with variable coefficients in the principal part by Riemannian multiplier method. A differential geometric condition that ensures the exponential decay is obtained.