The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andf...The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.展开更多
Two TFs (transfer functions) are needed to analyze switching DC-DC converters in control-voltage mode: the duty-cycle to output-voltage (control to output) and the input-voltage to output-voltage (line to output...Two TFs (transfer functions) are needed to analyze switching DC-DC converters in control-voltage mode: the duty-cycle to output-voltage (control to output) and the input-voltage to output-voltage (line to output). To obtain these TFs a small-signal analysis is required. The CCM (continuous conduction mode) and the DCM (discontinuous conduction mode) analysis are different. When a circuit includes the loss resistances of the components, the number of parameters increases considerably, making manual nodal-loop circuit analysis techniques impractical to obtain the TFs. Moreover, these circuits are bilinear (non-linear) and it is necessary to linearize the equations at a DC operating-point (approximate linearization). Vorp6rian describes a PWM (pulse-width-modulated) switch model that includes all non-linear parts of the DC-DC switching converters. This model can be linearized and replaced on the switching converter schematic leading to a linear circuit. At this point it is possible to use symbolic analysis programs to obtain these TFs or to simply apply numerical values for either the Bode diagrams or the calculation of poles and zeros. Here we describe an application of Ekrem Cangeici's method on X DC-DC converter to obtain control to output and line to output TFs in CCM and DCM including loss resistances. The method presented in this paper is optimized to use in the online publishing platform OctaveRS. Also the control to output TF for PCC (peak current controlled) in CCM is obtained.展开更多
Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability ...Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.展开更多
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Plan of China
文摘The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.
文摘Two TFs (transfer functions) are needed to analyze switching DC-DC converters in control-voltage mode: the duty-cycle to output-voltage (control to output) and the input-voltage to output-voltage (line to output). To obtain these TFs a small-signal analysis is required. The CCM (continuous conduction mode) and the DCM (discontinuous conduction mode) analysis are different. When a circuit includes the loss resistances of the components, the number of parameters increases considerably, making manual nodal-loop circuit analysis techniques impractical to obtain the TFs. Moreover, these circuits are bilinear (non-linear) and it is necessary to linearize the equations at a DC operating-point (approximate linearization). Vorp6rian describes a PWM (pulse-width-modulated) switch model that includes all non-linear parts of the DC-DC switching converters. This model can be linearized and replaced on the switching converter schematic leading to a linear circuit. At this point it is possible to use symbolic analysis programs to obtain these TFs or to simply apply numerical values for either the Bode diagrams or the calculation of poles and zeros. Here we describe an application of Ekrem Cangeici's method on X DC-DC converter to obtain control to output and line to output TFs in CCM and DCM including loss resistances. The method presented in this paper is optimized to use in the online publishing platform OctaveRS. Also the control to output TF for PCC (peak current controlled) in CCM is obtained.
基金National Natural Science Foundation of China(No.61741508)
文摘Due to the decrease in the number of switches for the four-switch three-phase alternating current-direct current(FSTP AC-DC)converter,it can easily lead to DC-link capacitor voltage imbalance and the system stability reduction.In order to solve these problems,a finite control set model predictive control(FCS-MPC)for FSTP AC-DC converters with DC-link capacitor voltage balancing is proposed.In this strategy,in order to facilitate calculation,theαβcoordinate system model is established and all voltage vectors are evaluated by establishing a cost function.During the whole process,phase locked loop(PLL)and complex modulation strategy are not required.In the new established cost function,the additional objective term of suppressing capacitor voltage fluctuation is to eliminate effectively the capacitor voltages oscillations and deviations and improve the system reliability.The simulation results show that the proposed strategy can keep the capacitor voltage balancing and has good dynamic and static performance.