丰富的可读性源信息对逆向工作具有重要意义,尤其是高质量的函数名对程序理解非常重要。然而,软件发布者无论是出于防止逆向或者精简软件大小的角度,往往会发布剥离掉源级调试信息的可执行文件,可读性信息缺失导致逆向分析难度加大。因...丰富的可读性源信息对逆向工作具有重要意义,尤其是高质量的函数名对程序理解非常重要。然而,软件发布者无论是出于防止逆向或者精简软件大小的角度,往往会发布剥离掉源级调试信息的可执行文件,可读性信息缺失导致逆向分析难度加大。因此,提出了一种多架构函数名预测(Multi-architecture Function Name Prediction,MFNP)方法,利用LLVM RetDec反编译X86,ARM,MIPS架构的二进制文件为中间语言(IR)文件解决不同架构之间存在差异的问题。对中间语言.ll文件中的函数名进行形态上、语义上的相似性比较,对函数名进行相似性融合来降低函数名数据稀疏性。将携带顺序指令语义信息的基本块以及以基本块为基本单位的函数体控制流图作为函数体的语义特征,结合神经网络来实现X86,MIPS,ARM这3种架构下剥离二进制文件的函数名预测。相比DEBIN,所提方法额外支持MIPS架构下的剥离二进制函数名预测工作,其在Precision和F1方面相比NERO提高了13.86%和11.93%。最后验证了MFNP选用以基本块为基本单位提取的顺序指令序列和控制流图作为语义特征的有效性。展开更多
In this paper, the properties of bianalytic functions w(z) = z^-Ф1(z) +Ф2(z) with zero arc at the pole z = 0 are discussed. Some conditions under which there exists an arc γ, an end of which is z = 0, such t...In this paper, the properties of bianalytic functions w(z) = z^-Ф1(z) +Ф2(z) with zero arc at the pole z = 0 are discussed. Some conditions under which there exists an arc γ, an end of which is z = 0, such that w(z) =0 for arbitary z ∈γ/{0} are given. Secondly, that the limit set of w(z) is a circle or line as z → 0 is proved in this case. Finally, two numerical examples are given to illustrate our results.展开更多
Let π and π' be automorphic irreducible cuspidal representations of GLm(QA) and GLm'(QA),respectively,and L(s,π×■) be the Rankin-Selberg L-function attached to π and π'.Without assuming the Gene...Let π and π' be automorphic irreducible cuspidal representations of GLm(QA) and GLm'(QA),respectively,and L(s,π×■) be the Rankin-Selberg L-function attached to π and π'.Without assuming the Generalized Ramanujan Conjecture(GRC),the author gives the generalized prime number theorem for L(s,π×■) when π≌π'.The result generalizes the corresponding result of Liu and Ye in 2007.展开更多
This paper deals with the existence of solutions for the problem{(Фp(u′))′=f(t,u,u′),t∈(0,1), u′(0)=0,u(1)=∑i=1^n-2aiu(ηi),where Фp(s)=|s|^p-2s,p〉1.0〈η1〈η2〈…〈ηn-2〈1,ai(i=1,2,…,n-...This paper deals with the existence of solutions for the problem{(Фp(u′))′=f(t,u,u′),t∈(0,1), u′(0)=0,u(1)=∑i=1^n-2aiu(ηi),where Фp(s)=|s|^p-2s,p〉1.0〈η1〈η2〈…〈ηn-2〈1,ai(i=1,2,…,n-2)are non-negative constants and ∑i=1^n-2ai=1.Some known results are improved under some sign and growth conditions. The proof is based on the Brouwer degree theory.展开更多
文摘丰富的可读性源信息对逆向工作具有重要意义,尤其是高质量的函数名对程序理解非常重要。然而,软件发布者无论是出于防止逆向或者精简软件大小的角度,往往会发布剥离掉源级调试信息的可执行文件,可读性信息缺失导致逆向分析难度加大。因此,提出了一种多架构函数名预测(Multi-architecture Function Name Prediction,MFNP)方法,利用LLVM RetDec反编译X86,ARM,MIPS架构的二进制文件为中间语言(IR)文件解决不同架构之间存在差异的问题。对中间语言.ll文件中的函数名进行形态上、语义上的相似性比较,对函数名进行相似性融合来降低函数名数据稀疏性。将携带顺序指令语义信息的基本块以及以基本块为基本单位的函数体控制流图作为函数体的语义特征,结合神经网络来实现X86,MIPS,ARM这3种架构下剥离二进制文件的函数名预测。相比DEBIN,所提方法额外支持MIPS架构下的剥离二进制函数名预测工作,其在Precision和F1方面相比NERO提高了13.86%和11.93%。最后验证了MFNP选用以基本块为基本单位提取的顺序指令序列和控制流图作为语义特征的有效性。
基金the National Natural Science Foundation of China(No.10601036)
文摘In this paper, the properties of bianalytic functions w(z) = z^-Ф1(z) +Ф2(z) with zero arc at the pole z = 0 are discussed. Some conditions under which there exists an arc γ, an end of which is z = 0, such that w(z) =0 for arbitary z ∈γ/{0} are given. Secondly, that the limit set of w(z) is a circle or line as z → 0 is proved in this case. Finally, two numerical examples are given to illustrate our results.
文摘Let π and π' be automorphic irreducible cuspidal representations of GLm(QA) and GLm'(QA),respectively,and L(s,π×■) be the Rankin-Selberg L-function attached to π and π'.Without assuming the Generalized Ramanujan Conjecture(GRC),the author gives the generalized prime number theorem for L(s,π×■) when π≌π'.The result generalizes the corresponding result of Liu and Ye in 2007.
基金the National Natural Science Foundation of China(No.10771212)the Foundation of China University of Mining and Technology(Nos.2005A041+1 种基金2006A0422008A037)
文摘This paper deals with the existence of solutions for the problem{(Фp(u′))′=f(t,u,u′),t∈(0,1), u′(0)=0,u(1)=∑i=1^n-2aiu(ηi),where Фp(s)=|s|^p-2s,p〉1.0〈η1〈η2〈…〈ηn-2〈1,ai(i=1,2,…,n-2)are non-negative constants and ∑i=1^n-2ai=1.Some known results are improved under some sign and growth conditions. The proof is based on the Brouwer degree theory.