This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary erro...This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.展开更多
Abstract We use moderate deviations to study the signal detection problem for a diffusion model. We establish a moderate deviation principle for the log-likelihood function of the diffusion model. Then applying the mo...Abstract We use moderate deviations to study the signal detection problem for a diffusion model. We establish a moderate deviation principle for the log-likelihood function of the diffusion model. Then applying the moderate deviation estimates to hypothesis testing for signal detection problem we give a decision region such that its error probability of the second kind tends to zero with faster speed than the error probability of the first kind when the error probability of the first kind is approximated by e-ατ(T), where α〉 0, τ(T) = o(T) and τ(T)→∞ as the observation time T goes to infinity.展开更多
Machine learning techniques which are about the construction and study of system that can learn from data are combined with many application fields.A method on ionospheric total electron content(TEC)mapping is propose...Machine learning techniques which are about the construction and study of system that can learn from data are combined with many application fields.A method on ionospheric total electron content(TEC)mapping is proposed based on radical basis function(RBF)neural network improved by Gaussian mixture model(GMM).Due to the complicated ionospheric behavior over China,GMM is used to determine the center of basis function in the unsupervised training process.Gradient descent is performed to update the weights function on a sum of squared output error function in the supervised learning process.The TEC values from the center for orbit determination in Europe(CODE)global ionospheric maps covering the period from 2007to 2010 are used to investigate the performance of the developed network model.For independent validation,the simulated TEC values at different latitudes(20°N,30°N and 40°N)along 120°E longitude are analyzed and evaluated.The results show that the simulated TEC from the RBF network based model has good agreement with the observed CODE TEC with acceptable errors.The theoretical research indicates that RBF can offer a powerful and reliable alternative to the design of ionospheric TEC forecast technologies and thus make a significant contribution to the ionospheric modeling efforts in China.展开更多
In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are hea...In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are heavy-tailed and may not even possess variances or means.The main contribution of this paper is that we establish some oracle inequalities for the inverse problems by using quantile coupling technique that gives a tight bound for the quantile coupling between an arbitrary sample p-quantile and a normal variable,and an automatic selection principle for the nonrandom filters.This leads to the data-driven choice of weights.We also give an algorithm for its implementation.The quantile coupling inequality developed in this paper is of independent interest,because it includes the median coupling inequality in literature as a special case.展开更多
Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on cl...Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on closed interval [0, 1], and the random errors (εni, 1 ≤i≤ n) axe assumed to have the same distribution as (ξi, 1 ≤ i ≤ n), which is a stationary and a-mixing time series with Eξi =0. Under appropriate conditions, we study asymptotic normality of wavelet estimators of g(.) and f(.). Finite sample behavior of the estimators is investigated via simulations, too.展开更多
We investigate the synchronization ability of four types of regular coupled networks. By introducing the proper error variables and Lyapunov functions, we turn the stability of synchronization manifold into that of nu...We investigate the synchronization ability of four types of regular coupled networks. By introducing the proper error variables and Lyapunov functions, we turn the stability of synchronization manifold into that of null solution of error equations, further, into the negative definiteness of some symmetric matrices, thus we get the sufficient synchronization stability conditions. To test the valid of the results, we take the Chua's circuit as an example. Although the theoretical synchronization thresholds appear to be very conservative, they provide new insights about the influence of topology and scale of networks on synchronization, and that the theoretical results and our numerical simulations are consistent.展开更多
This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the ra...This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the rates of convergence of either the empirical distribution or a smoothed version of the empirical distribution function matches exactly the rates obtained for an independent sample from the error distribution.展开更多
基金Supported by the National Natural Science Foundation of China(61374044)Shanghai Science Technology Commission(12510709400)+1 种基金Shanghai Municipal Education Commission(14ZZ088)Shanghai Talent Development Plan
文摘This paper focuses on resolving the identification problem of a neuro-fuzzy model(NFM) applied in batch processes. A hybrid learning algorithm is introduced to identify the proposed NFM with the idea of auxiliary error model and the identification principle based on the probability density function(PDF). The main contribution is that the NFM parameter updating approach is transformed into the shape control for the PDF of modeling error. More specifically, a virtual adaptive control system is constructed with the aid of the auxiliary error model and then the PDF shape control idea is used to tune NFM parameters so that the PDF of modeling error is controlled to follow a targeted PDF, which is in Gaussian or uniform distribution. Examples are used to validate the applicability of the proposed method and comparisons are made with the minimum mean square error based approaches.
基金supported by National Natural Science Foundation of China (Grant Nos.10871153 and 11171262)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200804860048)
文摘Abstract We use moderate deviations to study the signal detection problem for a diffusion model. We establish a moderate deviation principle for the log-likelihood function of the diffusion model. Then applying the moderate deviation estimates to hypothesis testing for signal detection problem we give a decision region such that its error probability of the second kind tends to zero with faster speed than the error probability of the first kind when the error probability of the first kind is approximated by e-ατ(T), where α〉 0, τ(T) = o(T) and τ(T)→∞ as the observation time T goes to infinity.
基金supported by the National Natural Science Foundation of China(Grant No.41104096)
文摘Machine learning techniques which are about the construction and study of system that can learn from data are combined with many application fields.A method on ionospheric total electron content(TEC)mapping is proposed based on radical basis function(RBF)neural network improved by Gaussian mixture model(GMM).Due to the complicated ionospheric behavior over China,GMM is used to determine the center of basis function in the unsupervised training process.Gradient descent is performed to update the weights function on a sum of squared output error function in the supervised learning process.The TEC values from the center for orbit determination in Europe(CODE)global ionospheric maps covering the period from 2007to 2010 are used to investigate the performance of the developed network model.For independent validation,the simulated TEC values at different latitudes(20°N,30°N and 40°N)along 120°E longitude are analyzed and evaluated.The results show that the simulated TEC from the RBF network based model has good agreement with the observed CODE TEC with acceptable errors.The theoretical research indicates that RBF can offer a powerful and reliable alternative to the design of ionospheric TEC forecast technologies and thus make a significant contribution to the ionospheric modeling efforts in China.
基金supported by the Major Project of Humanities Social Science Foundation of Ministry of Education(Grant No. 08JJD910247)Key Project of Chinese Ministry of Education (Grant No. 108120)+4 种基金National Natural Science Foundation of China (Grant No. 10871201)Beijing Natural Science Foundation (Grant No. 1102021)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No. 10XNL018)the China Statistical Research Project (Grant No. 2011LZ031)
文摘In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are heavy-tailed and may not even possess variances or means.The main contribution of this paper is that we establish some oracle inequalities for the inverse problems by using quantile coupling technique that gives a tight bound for the quantile coupling between an arbitrary sample p-quantile and a normal variable,and an automatic selection principle for the nonrandom filters.This leads to the data-driven choice of weights.We also give an algorithm for its implementation.The quantile coupling inequality developed in this paper is of independent interest,because it includes the median coupling inequality in literature as a special case.
基金supported by the National Natural Science Foundation of China under Grant No.10871146the Grant MTM2008-03129 from the Spanish Ministry of Science and Innovation
文摘Consider heteroscedastic regression model Yni= g(xni) + σniεni (1 〈 i 〈 n), where σ2ni= f(uni), the design points (xni, uni) are known and nonrandom, g(.) and f(.) are unknown functions defined on closed interval [0, 1], and the random errors (εni, 1 ≤i≤ n) axe assumed to have the same distribution as (ξi, 1 ≤ i ≤ n), which is a stationary and a-mixing time series with Eξi =0. Under appropriate conditions, we study asymptotic normality of wavelet estimators of g(.) and f(.). Finite sample behavior of the estimators is investigated via simulations, too.
基金Supported by National Natural Science Foundation under Grant No.11002073the Fundamental Research Funds for the Central Universities under Grant No.2011RC0702
文摘We investigate the synchronization ability of four types of regular coupled networks. By introducing the proper error variables and Lyapunov functions, we turn the stability of synchronization manifold into that of null solution of error equations, further, into the negative definiteness of some symmetric matrices, thus we get the sufficient synchronization stability conditions. To test the valid of the results, we take the Chua's circuit as an example. Although the theoretical synchronization thresholds appear to be very conservative, they provide new insights about the influence of topology and scale of networks on synchronization, and that the theoretical results and our numerical simulations are consistent.
基金supported by the National Science Foundation of China under Grant Nos.11201422,11301481,and 11371321Zhejiang Provincial Natural Science Foundation of China under Grant Nos.Y6110639,Y6110110,LQ12A01018,and LQ12A01017+2 种基金the National Statistical Science Research Project of China under Grant No.2012LY174Foundation for Young Talents of ZJGSU under Grant No.1020XJ1314019Zhejiang Provincial Key Research Base for Humanities and Social Science Research(Statistics)
文摘This paper considers the convergence rates for nonparametric estimators of the error distribution in semi-parametric regression models. By establishing some general laws of the iterated logarithm, it shows that the rates of convergence of either the empirical distribution or a smoothed version of the empirical distribution function matches exactly the rates obtained for an independent sample from the error distribution.