In a recent article [Commun. Theor. Phys. (Beijing, China) 47 (2007) 270], Cao et al. gave some nontrivial solutions of a Riccati equation by using symbolic and algebra computation. They took these solutions, whic...In a recent article [Commun. Theor. Phys. (Beijing, China) 47 (2007) 270], Cao et al. gave some nontrivial solutions of a Riccati equation by using symbolic and algebra computation. They took these solutions, which are in the form of q-deformed hyperbolic and triangular functions as new solutions. In this comment, we will show that these solutions are just the special cases of some known solutions of the Riccati equation and thus they are not new solutions.展开更多
In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t...In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.展开更多
We consider the chordal Loewner differential equation in the upper half-plane,the behavior of the driving functionλ(t)and the generated hull Kt when Kt approachesλ(0)in a fixed direction or in a sector.In the case t...We consider the chordal Loewner differential equation in the upper half-plane,the behavior of the driving functionλ(t)and the generated hull Kt when Kt approachesλ(0)in a fixed direction or in a sector.In the case that the hull Kt is generated by a simple curveγ(t)withγ(0)=0,we prove some sharp relations ofλ(t)/√t andγ(t)/√t as t→0 which improve the previous work.展开更多
The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-S...The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-Stokes-Maxwell equations converges to the smooth solution of incompressible Navier-Stokes equations by introducing new modulated energy functional.展开更多
The polynomial-like iterative equation is an important form of functional equations, in which iterates of the unknown function are linked in a linear combination. Most of known results were given for the given functio...The polynomial-like iterative equation is an important form of functional equations, in which iterates of the unknown function are linked in a linear combination. Most of known results were given for the given function to be monotone. We discuss this equation for continuous solutions in the case that the given function is a PM(piecewise monotone) function, a special class of non-monotonic functions. Using extension method, we give a general construction of solutions for the polynomial-like iterative equation.展开更多
Since the spherical Gaussian radial function is strictly positive definite, the authors use the linear combinations of translations of the Gaussian kernel to interpolate the scattered data on spheres in this article. ...Since the spherical Gaussian radial function is strictly positive definite, the authors use the linear combinations of translations of the Gaussian kernel to interpolate the scattered data on spheres in this article. Seeing that target functions axe usually outside the native spaces, and that one has to solve a large scaled system of linear equations to obtain combinatorial coefficients of interpolant functions, the authors first probe into some problems about interpolation with Gaussian radial functions. Then they construct quasi- interpolation operators by Gaussian radial function, and get the degrees of approximation. Moreover, they show the error relations between quasi-interpolation and interpolation when they have the same basis functions. Finally, the authors discuss the construction and approximation of the quasi-interpolant with a local support function.展开更多
In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in ...In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.展开更多
In this paper, we present a method for constructing a Dulac function for mathematical models in population biology, in the form of systems of ordinary differential equations in the plane.
基金supported by National Natural Science Foundation of China under Grant No.10671172the Natural Science Foundation of Jiangsu Province under Grant No.BK2006064
文摘In a recent article [Commun. Theor. Phys. (Beijing, China) 47 (2007) 270], Cao et al. gave some nontrivial solutions of a Riccati equation by using symbolic and algebra computation. They took these solutions, which are in the form of q-deformed hyperbolic and triangular functions as new solutions. In this comment, we will show that these solutions are just the special cases of some known solutions of the Riccati equation and thus they are not new solutions.
文摘In this paper, we consider the problem (θ(x,U))_t=(K(x,U)U_x)_x-(K(x,U))_x (x,t)∈G_T (θ(x,U)V(x,t))_t=(DθV_x)_x+(V(KU_x-K))_x,(x,t)∈G_T, u(x,0)=u_0(x),V(x,0),(x,0)=V_0(x),0≤x≤2, U(0,t)=h_0(t),U(2,t)=h_2(t),0≤t≤T, V(0,t)=g_0(t),V(2,t)=g_2(t),0≤t≤T. Where, θ(x,U)=θ_1(x,U) when (x,t)∈D_1={0≤x<1,0≤t≤T};θ(x,U)=θ_2(x,U),(x,t)∈D_2={1<x≤2,0≤t≤T}.K(x,U)=K_i(x,U),(x,t)∈D_i. θ_i, K_i are the Moisture content and hy draulic conductivity of porous Media on D_i respectively. V be the the concentration of solute in the fluid. In addition we also require that U, V, (K(x,U)U_x-1) and DθV_x+V(KU_x-K) are continu ous at x=1. We prove the exisence, uniqueness and large time behavior of the problem by the method of reg ularization.
基金supported by National Natural Science Foundation of China(Grant No.11171100)Hunan Provincial Natural Science Foundation of China(Grant No.13JJ4042)+2 种基金Scientific ResearchFund of Hunan Provincial Education Department(Grant No.11W012)Hunan Provincial Innovation Foundationfor Postgraduate(Grant No.125000-4246)Hunan Oversea Expert Scheme
文摘We consider the chordal Loewner differential equation in the upper half-plane,the behavior of the driving functionλ(t)and the generated hull Kt when Kt approachesλ(0)in a fixed direction or in a sector.In the case that the hull Kt is generated by a simple curveγ(t)withγ(0)=0,we prove some sharp relations ofλ(t)/√t andγ(t)/√t as t→0 which improve the previous work.
基金supported by the Joint Funds of National Natural Science Foundation of China(Grant No.U1204103)China Postdoctoral Science Foundation Funded Project(Grant No.2013M530032)the Science and Technology Research Projects of Education Department of Henan Province(Grant No.13A110731)
文摘The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-Stokes-Maxwell equations converges to the smooth solution of incompressible Navier-Stokes equations by introducing new modulated energy functional.
基金supported by National Natural Science Foundation of China (Grant No. 11501471)Fundamental Research Funds for the Central Universities (Grant No. 2682015BR017)
文摘The polynomial-like iterative equation is an important form of functional equations, in which iterates of the unknown function are linked in a linear combination. Most of known results were given for the given function to be monotone. We discuss this equation for continuous solutions in the case that the given function is a PM(piecewise monotone) function, a special class of non-monotonic functions. Using extension method, we give a general construction of solutions for the polynomial-like iterative equation.
基金supported by the National Natural Science Foundation of China(Nos.61272023,61179041)
文摘Since the spherical Gaussian radial function is strictly positive definite, the authors use the linear combinations of translations of the Gaussian kernel to interpolate the scattered data on spheres in this article. Seeing that target functions axe usually outside the native spaces, and that one has to solve a large scaled system of linear equations to obtain combinatorial coefficients of interpolant functions, the authors first probe into some problems about interpolation with Gaussian radial functions. Then they construct quasi- interpolation operators by Gaussian radial function, and get the degrees of approximation. Moreover, they show the error relations between quasi-interpolation and interpolation when they have the same basis functions. Finally, the authors discuss the construction and approximation of the quasi-interpolant with a local support function.
文摘In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.
文摘In this paper, we present a method for constructing a Dulac function for mathematical models in population biology, in the form of systems of ordinary differential equations in the plane.