The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended e...The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.展开更多
Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved ...Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.展开更多
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ...In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.展开更多
Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series o...Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.展开更多
In this paper, firstly we study the series ma intenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operator s theory. ...In this paper, firstly we study the series ma intenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operator s theory. Then we prove that 0 is the eigenvalue of the system’s host operators, a nd finally we study the eigenvector of the eigenvalue 0.展开更多
This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization proble...This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including three gear units and their regular resistance condition are analyses. From the results of the study, effective formula for determination of the partial ratios of three-step helical gearboxes is introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.展开更多
In this paper, the author proves the Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. This is used to investigate isomorphisms between quasi-Banach algebras.
It is well-known that every member of the KdV hierarchy of equations can be obtained from the AKNS hierarchy of equations by imposing a simple reduction. The author finds that the reduction conditions of the potential...It is well-known that every member of the KdV hierarchy of equations can be obtained from the AKNS hierarchy of equations by imposing a simple reduction. The author finds that the reduction conditions of the potentials in the spectral problem can be replaced by adding additional eigenfunction equations to the spectral problem, and then shows that the restricted KdV flows, such as the Neumann system, the Gamier system and the generalized multicomponent Henon-Hieles system, are a kind of special reductions of the restricted AKNS flows.展开更多
Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈...Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈 P. In mN+l contrast, if 〉 p, there is no solution to the Cauchy problem with an initial value δ(X), where 5(x) is the classical Dirac function.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No. 10962004the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20070126002
文摘The eigenfunction system of infinite-dimensional Hamiltonian operators appearing in the bending problem of rectangular plate with two opposites simply supported is studied. At first, the completeness of the extended eigenfunction system in the sense of Cauchy's principal value is proved. Then the incompleteness of the extended eigenfunction system in general sense is proved. So the completeness of the symplectic orthogonal system of the infinite-dimensional Hamiltonian operator of this kind of plate bending equation is proved. At last the general solution of the infinite dimensional Hamiltonian system is equivalent to the solution function system series expansion, so it gives to theoretical basis of the methods of separation of variables based on Hamiltonian system for this kind of equations.
文摘Hamiltonian formalism of the mKdV equation with non-vanishing boundary valueis re-examined by a revised form of the standard procedure. It is known that the previous papers did not give the final results and involved some questionable points [T.C. Au Yeung and P.C.W. Fung, J. Phys. A 21 (1988) 3575]. In this note, simple results are obtained in terms of an affine parameter and a Galileo transformation is introduced to ensure the results compatible with those derived from the inverse scattering transform.
基金supported in part by NSF of China N.10871131The Science and Technology Commission of Shanghai Municipality,Grant N.075105118+1 种基金Shanghai Leading Academic Discipline Project N.T0401Fund for E-institute of Shanghai Universities N.E03004.
文摘In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.
文摘Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.
文摘In this paper, firstly we study the series ma intenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operator s theory. Then we prove that 0 is the eigenvalue of the system’s host operators, a nd finally we study the eigenvector of the eigenvalue 0.
文摘This paper presents a new study on optimum calculation of partial ratios of three-step helical gearboxes. The chosen objective function is the cross section dimension of the gearbox. In solving the optimization problem, the design equation for pitting resistance of a gear set was investigated and equations on moment equilibrium condition of a mechanic system including three gear units and their regular resistance condition are analyses. From the results of the study, effective formula for determination of the partial ratios of three-step helical gearboxes is introduced. As the formulas are explicit, the partial ratios can be calculated accurately and simply.
基金the Korea Research Foundation (No. KRF-2005-041-C00027).
文摘In this paper, the author proves the Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras. This is used to investigate isomorphisms between quasi-Banach algebras.
基金Project supported by the National Natural Science Foundation of China (No.10871165)
文摘It is well-known that every member of the KdV hierarchy of equations can be obtained from the AKNS hierarchy of equations by imposing a simple reduction. The author finds that the reduction conditions of the potentials in the spectral problem can be replaced by adding additional eigenfunction equations to the spectral problem, and then shows that the restricted KdV flows, such as the Neumann system, the Gamier system and the generalized multicomponent Henon-Hieles system, are a kind of special reductions of the restricted AKNS flows.
基金Project supported by the Fujian Provincial Natural Science Foundation of China (No. 2012J01011)Pan Jinglong’s Natural Science Foundation of Jimei University (No. ZC2010019)
文摘Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈 P. In mN+l contrast, if 〉 p, there is no solution to the Cauchy problem with an initial value δ(X), where 5(x) is the classical Dirac function.