To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavele...To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavelet modulus maxima. For the purpose of maxima selection, the spatially selective noise filtration technique was used to distinguish modulus maxima produced by signal from the one created by noise. To test the method, sodium spectrum measured at a wide slit was deconvolved. He-Ne spectrum measured at the corresponding slit width was used as slit function. Sodium measured at a narrow slit was used as the reference spectrum. The deconvolutton result shows that this method can enhance the resolution of the degraded spectrum greatly.展开更多
In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
By the theory of complex functions, a dynamic problem on the edges of a mode I crack subjected to moving unit-step loads are investigated. The Riemann-Hilbert problem is easily formulated by the ways of self-similar f...By the theory of complex functions, a dynamic problem on the edges of a mode I crack subjected to moving unit-step loads are investigated. The Riemann-Hilbert problem is easily formulated by the ways of self-similar functions. The analytical solution obtained is rather simple and concise. After the solution was utilized by superposition theorem, the relevant solution on the case of arbitrary loading can be obtained.展开更多
One of the major concerns in structures is early detection of a growing crack to prevent fracture, predict remaining useful life, schedule maintenance and reduce costly downtimes. AE (acoustic emission) is a non-des...One of the major concerns in structures is early detection of a growing crack to prevent fracture, predict remaining useful life, schedule maintenance and reduce costly downtimes. AE (acoustic emission) is a non-destructive testing method with potential applications for locating and monitoring fatigue cracks. This paper focuses on in-situ monitoring of structural health, specifically detection of small crack growth and crack initiation in structures using AE technology. A probabilistic AE-based model for small fatigue cracks was developed and the uncertainties of the model were estimated. The paper discusses the methodology used, experimental approach, results obtained and predictive models developed.The developed model can be used to evaluate the integrity of structures and assess structural health by estimating the probability density function of the length of detected cracks. The outcome of this research has significant potential to be used for in-situ monitoring and evaluation of structural integrity.展开更多
Are quantum states real? This most fundamental question in quantum mechanics has not yet been satisfactorily resolved, although its realistic interpretation seems to have been rejected by various delayedchoice experim...Are quantum states real? This most fundamental question in quantum mechanics has not yet been satisfactorily resolved, although its realistic interpretation seems to have been rejected by various delayedchoice experiments. Here, to address this long-standing issue, we present a quantum twisted double-slit experiment. By exploiting the subluminal feature of twisted photons, the real nature of a photon during its time in flight is revealed for the first time. We found that photons' arrival times were inconsistent with the states obtained in measurements but agreed with the states during propagation. Our results demonstrate that wavefunctions describe the realistic existence and evolution of quantum entities rather than a pure mathematical abstraction providing a probability list of measurement outcomes. This finding clarifies the long-held misunderstanding of the role of wavefunctions and their collapse in the evolution of quantum entities.展开更多
In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure incl...In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J(z), the stress intensity factor K(z) and the tri-axial stress constraint level Tz(z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J(z) and Tz(z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.展开更多
The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has...The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.展开更多
文摘To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavelet modulus maxima. For the purpose of maxima selection, the spatially selective noise filtration technique was used to distinguish modulus maxima produced by signal from the one created by noise. To test the method, sodium spectrum measured at a wide slit was deconvolved. He-Ne spectrum measured at the corresponding slit width was used as slit function. Sodium measured at a narrow slit was used as the reference spectrum. The deconvolutton result shows that this method can enhance the resolution of the degraded spectrum greatly.
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
文摘By the theory of complex functions, a dynamic problem on the edges of a mode I crack subjected to moving unit-step loads are investigated. The Riemann-Hilbert problem is easily formulated by the ways of self-similar functions. The analytical solution obtained is rather simple and concise. After the solution was utilized by superposition theorem, the relevant solution on the case of arbitrary loading can be obtained.
文摘One of the major concerns in structures is early detection of a growing crack to prevent fracture, predict remaining useful life, schedule maintenance and reduce costly downtimes. AE (acoustic emission) is a non-destructive testing method with potential applications for locating and monitoring fatigue cracks. This paper focuses on in-situ monitoring of structural health, specifically detection of small crack growth and crack initiation in structures using AE technology. A probabilistic AE-based model for small fatigue cracks was developed and the uncertainties of the model were estimated. The paper discusses the methodology used, experimental approach, results obtained and predictive models developed.The developed model can be used to evaluate the integrity of structures and assess structural health by estimating the probability density function of the length of detected cracks. The outcome of this research has significant potential to be used for in-situ monitoring and evaluation of structural integrity.
基金supported by the National Natural Science Funds for Distinguished Young Scholars of China(61525504)the National Natural Science Foundation of China(11574065,11604322,61275115,61378003,61435011 and 61605194)+2 种基金China Postdoctoral Science Foundation(2016M590570)the Fundamental Research Funds for the Central Universities(11604322)the Key Programs of the Natural Science Foundation of Heilongjiang Province of China(ZD201415).
文摘Are quantum states real? This most fundamental question in quantum mechanics has not yet been satisfactorily resolved, although its realistic interpretation seems to have been rejected by various delayedchoice experiments. Here, to address this long-standing issue, we present a quantum twisted double-slit experiment. By exploiting the subluminal feature of twisted photons, the real nature of a photon during its time in flight is revealed for the first time. We found that photons' arrival times were inconsistent with the states obtained in measurements but agreed with the states during propagation. Our results demonstrate that wavefunctions describe the realistic existence and evolution of quantum entities rather than a pure mathematical abstraction providing a probability list of measurement outcomes. This finding clarifies the long-held misunderstanding of the role of wavefunctions and their collapse in the evolution of quantum entities.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2014B1801)
文摘In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J(z), the stress intensity factor K(z) and the tri-axial stress constraint level Tz(z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J(z) and Tz(z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.
基金supported by the National Science Funds for Distinguished Young Scholar of China (Grant No. 51125017)the National Basic Research Program of China (Grant Nos. 2010CB226804,2011CB201201)+2 种基金the National Natural Science Foundation of China (Grant No. 50974125)the International Cooperation Project of Ministry of Science & Technology of China (Grant No. 2012DFA60760-2)NSFC International Cooperation and Exchange Program (Grant No. 51120145001)
文摘The structure of fractures in nature rock appears irregular and induces complicated seepage flow behavior.The mechanism and quantitative description of fluid flow through rock fractures is a difficult subject that has been greatly concerned in the fields of geotechnical,mining,geological,and petroleum engineering.In order to probe the mechanism of fluid flow and the effects of rough structures,we conducted a few laboratory tests of fluid flow through single rough fractures,in which the Weierstrass-Mandelbrot fractal function and PMMA material were employed to produce the fracture models with various fractal roughnesses.A high-speed video camera was employed to record the fluid flow through the entire single rough fracture with a constant hydraulic pressure.The properties of fluid flow varying with the fracture roughness and the influences of the rough structure were analyzed.The components of flow resistance of a single rough fracture were discussed.A fractal model was proposed to relate the fluid resistance to the fracture roughness.A fractal equivalent permeability coefficient of a single rough fracture was formulated.This study aims to provide an experimental basis and reference for better understanding and quantitatively relating the fluid flow properties to the structures of rock fractures.