提出一种用最小二乘支持向量机(least squares support vector machine,LS-SVM)构造函数链接型神经网络(functional link artificial neural networks,FLANN)的滚动轴承故障诊断系统。介绍了相关原理和具体算法,并给出了滚动轴承故障诊...提出一种用最小二乘支持向量机(least squares support vector machine,LS-SVM)构造函数链接型神经网络(functional link artificial neural networks,FLANN)的滚动轴承故障诊断系统。介绍了相关原理和具体算法,并给出了滚动轴承故障诊断系统模型。首先,采用LS-SVM模型核函数代替常规FLANN模型的扩展函数,避免了扩展函数选择的任意性;其次,利用LS-SVM学习模型得到FLANN权重系数,避免了BP方法多次迭代寻优存在的耗时长、局部极小及迭代设置初值依赖经验等不足;最后,构造了多层LS-SVM-FLANN结构,对多类滚动轴承故障进行诊断。具体实验表明,用LS-SVM构造FLANN的滚动轴承故障识别系统精度高、鲁棒性好、实现简单。展开更多
针对传统随机向量函数链接网络集成模型时多样性不足和泛化性能差的问题,提出一种改进的随机向量函数链接集成模型.首先,通过6种简单回归模型替代传统随机向量函数链接网络中的直接链接;其次,采用高斯过程回归(Gaussian process regress...针对传统随机向量函数链接网络集成模型时多样性不足和泛化性能差的问题,提出一种改进的随机向量函数链接集成模型.首先,通过6种简单回归模型替代传统随机向量函数链接网络中的直接链接;其次,采用高斯过程回归(Gaussian process regression,GPR)方法初始化隐含层参数,增强各基分类器的多样性;最后,使用不同的结合策略,集成具有差异性的基分类器得到预测模型.结果表明,改进的随机向量函数链接集成模型的预测精度明显高于其他传统集成模型,较传统随机向量函数链接网络具有更好的泛化性能.展开更多
认知诊断测验因具有传统测验所不具备的诊断功能而日益受到重视。当前多级评分认知诊断模型开发中,研究者采用不同的链接函数(link function)开发出不同的多级评分认知诊断模型。本研究基于局部或相邻类别链接函数(local or adjacent ca...认知诊断测验因具有传统测验所不具备的诊断功能而日益受到重视。当前多级评分认知诊断模型开发中,研究者采用不同的链接函数(link function)开发出不同的多级评分认知诊断模型。本研究基于局部或相邻类别链接函数(local or adjacent categories link function)的思想,开发出多级评分认知诊断模型LC-DINA。研究采用Monte Carlo模拟研究与实证应用研究相结合的方法,将新开发模型与已有模型进行比较并应用于国际数学与科学评估(TIMMS)中,为实际应用者提供借鉴。展开更多
快速扩展的互联网形成了具有高维、稀疏和冗余特性的复杂网络.因此需要有效的技术从这些复杂网络数据中提取出最为重要的信息进行链接预测,以便为用户服务.本文提出一种基于AUC(Area under Curve)优化的链接预测算法.在该算法中,将AUC...快速扩展的互联网形成了具有高维、稀疏和冗余特性的复杂网络.因此需要有效的技术从这些复杂网络数据中提取出最为重要的信息进行链接预测,以便为用户服务.本文提出一种基于AUC(Area under Curve)优化的链接预测算法.在该算法中,将AUC作为优化的目标函数,将链接预测问题转化为二分分类问题.将顶点之间是否存在链接作为它所在的类的标号.通过优化AUC来进行二分分类,使用铰链函数按随机次梯度下降算法迭代更新权重矩阵.最后在一些来自不同领域的真实网络上对本算法进行了测试.实验结果表明,本算法与其他算法的结果相比可以实现更高质量的预测.展开更多
文摘提出一种用最小二乘支持向量机(least squares support vector machine,LS-SVM)构造函数链接型神经网络(functional link artificial neural networks,FLANN)的滚动轴承故障诊断系统。介绍了相关原理和具体算法,并给出了滚动轴承故障诊断系统模型。首先,采用LS-SVM模型核函数代替常规FLANN模型的扩展函数,避免了扩展函数选择的任意性;其次,利用LS-SVM学习模型得到FLANN权重系数,避免了BP方法多次迭代寻优存在的耗时长、局部极小及迭代设置初值依赖经验等不足;最后,构造了多层LS-SVM-FLANN结构,对多类滚动轴承故障进行诊断。具体实验表明,用LS-SVM构造FLANN的滚动轴承故障识别系统精度高、鲁棒性好、实现简单。
文摘针对传统随机向量函数链接网络集成模型时多样性不足和泛化性能差的问题,提出一种改进的随机向量函数链接集成模型.首先,通过6种简单回归模型替代传统随机向量函数链接网络中的直接链接;其次,采用高斯过程回归(Gaussian process regression,GPR)方法初始化隐含层参数,增强各基分类器的多样性;最后,使用不同的结合策略,集成具有差异性的基分类器得到预测模型.结果表明,改进的随机向量函数链接集成模型的预测精度明显高于其他传统集成模型,较传统随机向量函数链接网络具有更好的泛化性能.
文摘认知诊断测验因具有传统测验所不具备的诊断功能而日益受到重视。当前多级评分认知诊断模型开发中,研究者采用不同的链接函数(link function)开发出不同的多级评分认知诊断模型。本研究基于局部或相邻类别链接函数(local or adjacent categories link function)的思想,开发出多级评分认知诊断模型LC-DINA。研究采用Monte Carlo模拟研究与实证应用研究相结合的方法,将新开发模型与已有模型进行比较并应用于国际数学与科学评估(TIMMS)中,为实际应用者提供借鉴。
文摘快速扩展的互联网形成了具有高维、稀疏和冗余特性的复杂网络.因此需要有效的技术从这些复杂网络数据中提取出最为重要的信息进行链接预测,以便为用户服务.本文提出一种基于AUC(Area under Curve)优化的链接预测算法.在该算法中,将AUC作为优化的目标函数,将链接预测问题转化为二分分类问题.将顶点之间是否存在链接作为它所在的类的标号.通过优化AUC来进行二分分类,使用铰链函数按随机次梯度下降算法迭代更新权重矩阵.最后在一些来自不同领域的真实网络上对本算法进行了测试.实验结果表明,本算法与其他算法的结果相比可以实现更高质量的预测.