针对机床刀具磨损数据稀少与刀具磨损状态识别精度低的问题,提出了一种基于样本扩充与改进领域对抗网络(sample expansion and improved domain adversarial training of neural networks,SE-IDANN)的刀具状态识别方法。首先对机床刀具...针对机床刀具磨损数据稀少与刀具磨损状态识别精度低的问题,提出了一种基于样本扩充与改进领域对抗网络(sample expansion and improved domain adversarial training of neural networks,SE-IDANN)的刀具状态识别方法。首先对机床刀具数据进行两次特征提取,并通过Smote算法进行样本扩充,解决机床刀具磨损数据量稀少的问题;其次在领域对抗网络(domain adversarial training of neural networks,DANN)模型特征提取器中加入残差块,进一步提取有效特征信息,解决刀具磨损特征微弱的难题;最后将Wasserstein距离作为目标域与源域的数据分布相似度标准引入DANN模型,实现对刀具磨损量的精确识别。通过对机床刀具数据的分析与仿真试验验证,证明该方法能够有效地识别刀具磨损量。展开更多
文摘针对机床刀具磨损数据稀少与刀具磨损状态识别精度低的问题,提出了一种基于样本扩充与改进领域对抗网络(sample expansion and improved domain adversarial training of neural networks,SE-IDANN)的刀具状态识别方法。首先对机床刀具数据进行两次特征提取,并通过Smote算法进行样本扩充,解决机床刀具磨损数据量稀少的问题;其次在领域对抗网络(domain adversarial training of neural networks,DANN)模型特征提取器中加入残差块,进一步提取有效特征信息,解决刀具磨损特征微弱的难题;最后将Wasserstein距离作为目标域与源域的数据分布相似度标准引入DANN模型,实现对刀具磨损量的精确识别。通过对机床刀具数据的分析与仿真试验验证,证明该方法能够有效地识别刀具磨损量。