The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p <...The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p < 1), has been developed to approximate the rank function closely. We study the performance of projected gradient descent algorithm for solving the Schatten-p quasi-norm minimization(0 < p < 1) problem.Based on the matrix restricted isometry property(M-RIP), we give the convergence guarantee and error bound for this algorithm and show that the algorithm is robust to noise with an exponential convergence rate.展开更多
The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitut...The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11171299)
文摘The matrix rank minimization problem arises in many engineering applications. As this problem is NP-hard, a nonconvex relaxation of matrix rank minimization, called the Schatten-p quasi-norm minimization(0 < p < 1), has been developed to approximate the rank function closely. We study the performance of projected gradient descent algorithm for solving the Schatten-p quasi-norm minimization(0 < p < 1) problem.Based on the matrix restricted isometry property(M-RIP), we give the convergence guarantee and error bound for this algorithm and show that the algorithm is robust to noise with an exponential convergence rate.
基金Project supported by the National Natural Science Foundation of China (No. 50879090), and the Key Research Program of Hydrody- namics of China (No. 9140A 14030712JB 11044)
文摘The singularities and oscillatory performance of translating-pulsating source Green's function in Bessho form were analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and steepest descent integration method (SDIM) were used to evaluate this type of Green's function. For SDIM, the complex domain was restricted only on the 0-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was established. The numerical method was validated through comparison with other existing results, and was shown to be efficient and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc- tures moving in waves.