The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state f...The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state for SrF2 and BaF2 over the pressure range of 0.1 MPa-3 GPa and 0.1 MPa-7 GPa. Compared with previous results for equations of state, the maximum errors are 0.3% and 2.2%, respectively. Considering the pre-melting in the fluorite-type crystals, we made the necessary corrections for the simulated melting temper- atures of SrF2 and BaF2. Consequently, the melting temperatures of SrF2 and BaF2 were obtained for high pressures. The melting temperatures of SrF2 and BaF2 that were obtained by the simulation are in good agreement with available experimental data.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.10676025) and Research Center of Laser Fusion, China Academy of Engineering Physics.
文摘The shell-model molecular dynamics method was applied to simulate the melting temper- atures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state for SrF2 and BaF2 over the pressure range of 0.1 MPa-3 GPa and 0.1 MPa-7 GPa. Compared with previous results for equations of state, the maximum errors are 0.3% and 2.2%, respectively. Considering the pre-melting in the fluorite-type crystals, we made the necessary corrections for the simulated melting temper- atures of SrF2 and BaF2. Consequently, the melting temperatures of SrF2 and BaF2 were obtained for high pressures. The melting temperatures of SrF2 and BaF2 that were obtained by the simulation are in good agreement with available experimental data.