期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
随机效应模型的复合分位数回归估计 被引量:2
1
作者 罗登菊 戴家佳 罗兴甸 《贵州大学学报(自然科学版)》 2019年第2期96-100,108,共6页
在纵向数据处理中,随机效应模型是使用频率非常高的模型之一。本文主要采用复合分位数回归估计的方法,在对其参数进行估计的同时,证明了此估计渐近正态性。经模拟研究,比对了中位数回归估计、传统最小二乘估计和复合分位数回归估计三种... 在纵向数据处理中,随机效应模型是使用频率非常高的模型之一。本文主要采用复合分位数回归估计的方法,在对其参数进行估计的同时,证明了此估计渐近正态性。经模拟研究,比对了中位数回归估计、传统最小二乘估计和复合分位数回归估计三种估计的精度,模拟结果显示,在样本有限的情况下,本文所提出的方法对随机效应模型的参数估计是有效的,尤其当模型误差项不遵循高斯分布时,复合分位数回归估计的实用性是明显的。 展开更多
关键词 随机效应模型 复合分位数回归估计 最小二乘估计 分位数回归估计
下载PDF
教育增值评价中嵌套数据增长百分位估计方法探析:多水平线性分位数回归模型的应用 被引量:19
2
作者 周园 刘红云 《中国考试》 CSSCI 2020年第9期32-39,共8页
本研究重点探讨教育增值评价中,嵌套数据下学生及群体层面增长百分位的估计方法——多水平线性分位数回归模型,并基于实测数据,说明该估计方法在教育增值评价中的应用。多水平线性分位数回归估计方法可以充分考虑群体间差异,对学生能力... 本研究重点探讨教育增值评价中,嵌套数据下学生及群体层面增长百分位的估计方法——多水平线性分位数回归模型,并基于实测数据,说明该估计方法在教育增值评价中的应用。多水平线性分位数回归估计方法可以充分考虑群体间差异,对学生能力进行合理预测,进而更准确地估计群体增长百分位,使得对学校、教师等教育效能的评价更加准确;还可以在对其他背景影响因素(包括个体层面因素和群体层面因素)进行合理分析的基础上,得到学生层面和群体层面(如学校、班级、教师)的增长百分位估计。 展开更多
关键词 增值评价 教育评价 增长百 嵌套数据 多水平线性分位数回归估计
下载PDF
陕南生态移民政策对农户收入的影响研究 被引量:4
3
作者 赵剑波 余劲 《武汉理工大学学报(社会科学版)》 CSSCI 2015年第3期526-530,共5页
利用农户收入函数模型对陕西省安康市256户家庭的调研数据进行分析,分别从农户的资本要素、经营结构与地理因素三方面研究了移民政策下农户的收入情况。通过分位数回归分析法得出结论:资产要素禀赋方面,物质资产与农户收入之间存在正相... 利用农户收入函数模型对陕西省安康市256户家庭的调研数据进行分析,分别从农户的资本要素、经营结构与地理因素三方面研究了移民政策下农户的收入情况。通过分位数回归分析法得出结论:资产要素禀赋方面,物质资产与农户收入之间存在正相关关系,人力资本对高收入水平家庭起显著正作用,社会资本对低收入家庭作用较明显;农户的经营结构方面,通过减少农业劳动时间比例和增加外出打工时间能够提高农户收入;地理因素方面,距离城镇远近对农户家庭收入作用不明显。研究最后得出了移民政策对农户的收入起到正的作用的结论。 展开更多
关键词 生态移民政策 农户收入 农户收入模型 分位数回归估计
下载PDF
Partial functional linear quantile regression 被引量:4
4
作者 TANG QingGuo CHENG LongSheng 《Science China Mathematics》 SCIE 2014年第12期2589-2608,共20页
This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables.... This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optirnal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology. 展开更多
关键词 partial functional linear quantile regression quantile estimator functional principal coraponent analysis convergence rate
原文传递
Composite quantile regression estimation for P-GARCH processes 被引量:1
5
作者 ZHAO Biao CHEN Zhao +1 位作者 TAO GuiPing CHEN Min 《Science China Mathematics》 SCIE CSCD 2016年第5期977-998,共22页
We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH mo... We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator.The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions.The proposed methodology is also illustrated by Va R on stock price data. 展开更多
关键词 composite quantile regression periodic GARCH process strictly periodic stationarity strong consistency asymptotic normality
原文传递
Bayesian Empirical Likelihood Estimation of Quantile Structural Equation Models 被引量:7
6
作者 ZHANG Yanqing TANG Niansheng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第1期122-138,共17页
Structural equation model(SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and exp... Structural equation model(SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM(QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood(BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies. 展开更多
关键词 Bayesian empirical likelihood estimating equations latent variable models MCMC algo-rithm quantile regression structural equation models.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部