对于仿射空间中的非退化超曲面,运用中心仿射几何量在自然参数下的表示,给出了中心仿射体积的第一和第二变分公式简单的直接证明。进一步研究了Techebychev形式长度平方积分以及3形式长度平方积分的变分公式。The centro-affine differe...对于仿射空间中的非退化超曲面,运用中心仿射几何量在自然参数下的表示,给出了中心仿射体积的第一和第二变分公式简单的直接证明。进一步研究了Techebychev形式长度平方积分以及3形式长度平方积分的变分公式。The centro-affine differential geometric invariants of a piece of non-degenerate hypersurface in an affine space are represented with respect to the natural parametrization of the given hypersurface. Then a simple and direct proof of the first and the second variation formulae of the centro-affine volume is presented. Furthermore, the variational formulae of the integrals of the square of the length of the Tchebychev field and the cubic form are investigated.展开更多
文摘对于仿射空间中的非退化超曲面,运用中心仿射几何量在自然参数下的表示,给出了中心仿射体积的第一和第二变分公式简单的直接证明。进一步研究了Techebychev形式长度平方积分以及3形式长度平方积分的变分公式。The centro-affine differential geometric invariants of a piece of non-degenerate hypersurface in an affine space are represented with respect to the natural parametrization of the given hypersurface. Then a simple and direct proof of the first and the second variation formulae of the centro-affine volume is presented. Furthermore, the variational formulae of the integrals of the square of the length of the Tchebychev field and the cubic form are investigated.