针对煤炭运输过程中,经常无法保持煤炭在带式输送机上的运量均匀,使得带式输送机长时间全速运转而造成电能浪费和设备无效磨损的问题,提出一种基于语义分割的带式输送机煤料运输区域检测算法。该算法在DeeplabV3+的基础上,根据特征通道...针对煤炭运输过程中,经常无法保持煤炭在带式输送机上的运量均匀,使得带式输送机长时间全速运转而造成电能浪费和设备无效磨损的问题,提出一种基于语义分割的带式输送机煤料运输区域检测算法。该算法在DeeplabV3+的基础上,根据特征通道之间的相互依赖关系,引入注意力机制,使用不同扩张率的卷积核获得多种尺度的语义信息,来精确分割出煤炭在带式输送机的运输区域。实验结果表明,该算法平均交并比(Mean Intersection over Union,MIoU)相比于DeeplabV3+算法提高1.24百分点,能够有效精准地分割出煤料的运输区域,为煤量估计工作提供有效的保障。展开更多
针对金属涂层缺陷图像分割中存在特征提取能力弱和分割精度低的问题,提出了一种改进的U^(2)-Net分割模型。首先,在U型残差块(RSU)中嵌入改进的增大感受野模块(receptive field block light,RFB_l),组成新的特征提取层,增强对细节特征的...针对金属涂层缺陷图像分割中存在特征提取能力弱和分割精度低的问题,提出了一种改进的U^(2)-Net分割模型。首先,在U型残差块(RSU)中嵌入改进的增大感受野模块(receptive field block light,RFB_l),组成新的特征提取层,增强对细节特征的学习能力,解决了网络由于感受野受限造成分割精度低的问题;其次,在U^(2)-Net分割模型的解码阶段引入有效的边缘增强注意力机制(contour enhanced attention,CEA),抑制网络中的冗余特征,获取具有详细位置信息的特征注意力图,增强了边界与背景信息的差异性,从而达到更精确的分割效果。实验结果表明,该模型在两个金属涂层剥落与腐蚀数据集上的平均交并比、准确率、查准率、召回率和F_1-measure分别达到80.36%、96.29%、87.43%、84.61%和86.00%,相比于常用的SegNet、U-Net以及U^(2)-Net分割网络的性能都有较大提升。展开更多
文摘针对煤炭运输过程中,经常无法保持煤炭在带式输送机上的运量均匀,使得带式输送机长时间全速运转而造成电能浪费和设备无效磨损的问题,提出一种基于语义分割的带式输送机煤料运输区域检测算法。该算法在DeeplabV3+的基础上,根据特征通道之间的相互依赖关系,引入注意力机制,使用不同扩张率的卷积核获得多种尺度的语义信息,来精确分割出煤炭在带式输送机的运输区域。实验结果表明,该算法平均交并比(Mean Intersection over Union,MIoU)相比于DeeplabV3+算法提高1.24百分点,能够有效精准地分割出煤料的运输区域,为煤量估计工作提供有效的保障。