This paper presents a new kind of image retrieval system which obtains the feature vectors of images by estimating their fractal dimension; and at the same time establishes a tree structure image database. After prep...This paper presents a new kind of image retrieval system which obtains the feature vectors of images by estimating their fractal dimension; and at the same time establishes a tree structure image database. After preprocessing and feature extracting, a given image is matched with the standard images in the image database using a hierarchical method of image indexing.展开更多
Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to...Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.展开更多
Objective: To propose a method to segment tongue- images efficiently, and extract tongue- body accurately and quickly. Methods: Firstly, a kind of color- images' pre- processing technique was used to solve tongue-...Objective: To propose a method to segment tongue- images efficiently, and extract tongue- body accurately and quickly. Methods: Firstly, a kind of color- images' pre- processing technique was used to solve tongue- surface reflection problem. Neighbouring and similar region's information was used to restore the region with tongue- surface reflection problem by replacement. Secondly, the restored image was transformed into a gray one, and then processed by mathematical morphological operation- dilation to get a closed- loop edge. The third technique used was watershed algorithm, which is an usual tool in image segmentation. 'Watershed' function of matlab software was used to complete this algorithm. After that, region- combination technique was used. Through measuring neighbourship and similarity of regions, a non- objective and non- background region was merged into one of its neighbouring regions. This step was repeated until only two regions, objective and background regions, were left in the image. At last, corresponding to the merged image, tongue- body image was got from the original image. Results: 316 images were randomly taken from the image library for experiments, and 299 images were correctly segmented, so, the successful ratio is 94.62%. On the other hand, average time of running this method was about 50 s under whole sampling environment. Conclusion: The method presented in this paper can segment a tongue- body image from its original one effectively, and thus laying a good foundation for the following analysis work.展开更多
The method of fractal image compression is introduced which is applied to compress the line structured light image. Based on the self similarity of the structured light image, we attain satisfactory compression ratio ...The method of fractal image compression is introduced which is applied to compress the line structured light image. Based on the self similarity of the structured light image, we attain satisfactory compression ratio and higher peak signal to noise ratio (PSNR). The experimental results indicate that this method can achieve high performance.展开更多
Jacquard image segmentation is one of the primary steps in image analysis for jacquard pattern identification. The main aim is to recognize homogeneous regions within a jacquard image as distinct, which belongs to dif...Jacquard image segmentation is one of the primary steps in image analysis for jacquard pattern identification. The main aim is to recognize homogeneous regions within a jacquard image as distinct, which belongs to different patterns. Active contour models have become popular for finding the contours of a pattern with a complex shape. However, the performance of active contour models is often inadequate under noisy environment. In this paper, a robust algorithm based on the Mumford-Shah model is proposed for the segmentation of noisy jacquard images. First, the Mumford-Shah model is discretized on piecewise linear finite element spaces to yield greater stability. Then, an iterative relaxation algorithm for numerically solving the discrete version of the model is presented. In this algorithm, an adaptive triangular mesh is refined to generate Delaunay type triangular mesh defined on structured triangulations, and then a quasi-Newton numerical method is applied to find the absolute minimum of the discrete model. Experimental results on noisy jacquard images demonstrated the efficacy of the proposed algorithm.展开更多
文摘This paper presents a new kind of image retrieval system which obtains the feature vectors of images by estimating their fractal dimension; and at the same time establishes a tree structure image database. After preprocessing and feature extracting, a given image is matched with the standard images in the image database using a hierarchical method of image indexing.
基金National Natural Science Foundation of China(No.61261029)
文摘Watershed segmentation is sensitive to noises and irregular details within the image,which frequently leads to a serious over-segmentation Linear filtering before watershed segmentation can reduce over-segmentation to some extent,however,it often causes the position offset of object contours.For the purpose of reducing over-segmentation to preserve the location of object contours,the watershed segmentation based on the hierarchical multi-scale modification of morphological gradient is proposed.Firstly,multi-scale morphological filtering was employed to smooth the original image.Then,the gradient image was divided into multi-levels by the volume of three-dimension topographic relief,where the lower gradient layers were further modifiedby morphological closing with larger-sized structuring-elements,and the higher layers with the smaller one.In this way,most local minimums caused by irregular details and noises can be removed,while region contour positions corresponding to the target area were largely preserved.Finally,morphological watershed algorithm was employed to implement segmentation on the modified gradient image.The experimental results show that the proposed method can greatly reduce the over-segmentation of the watershed and avoid the position offset of the object contours.
基金National Natural Science Foundation of China grant number: 30371717
文摘Objective: To propose a method to segment tongue- images efficiently, and extract tongue- body accurately and quickly. Methods: Firstly, a kind of color- images' pre- processing technique was used to solve tongue- surface reflection problem. Neighbouring and similar region's information was used to restore the region with tongue- surface reflection problem by replacement. Secondly, the restored image was transformed into a gray one, and then processed by mathematical morphological operation- dilation to get a closed- loop edge. The third technique used was watershed algorithm, which is an usual tool in image segmentation. 'Watershed' function of matlab software was used to complete this algorithm. After that, region- combination technique was used. Through measuring neighbourship and similarity of regions, a non- objective and non- background region was merged into one of its neighbouring regions. This step was repeated until only two regions, objective and background regions, were left in the image. At last, corresponding to the merged image, tongue- body image was got from the original image. Results: 316 images were randomly taken from the image library for experiments, and 299 images were correctly segmented, so, the successful ratio is 94.62%. On the other hand, average time of running this method was about 50 s under whole sampling environment. Conclusion: The method presented in this paper can segment a tongue- body image from its original one effectively, and thus laying a good foundation for the following analysis work.
文摘The method of fractal image compression is introduced which is applied to compress the line structured light image. Based on the self similarity of the structured light image, we attain satisfactory compression ratio and higher peak signal to noise ratio (PSNR). The experimental results indicate that this method can achieve high performance.
基金Project (No. 2003AA411021) supported by the Hi-Tech Research andDevelopment Program (863) of China
文摘Jacquard image segmentation is one of the primary steps in image analysis for jacquard pattern identification. The main aim is to recognize homogeneous regions within a jacquard image as distinct, which belongs to different patterns. Active contour models have become popular for finding the contours of a pattern with a complex shape. However, the performance of active contour models is often inadequate under noisy environment. In this paper, a robust algorithm based on the Mumford-Shah model is proposed for the segmentation of noisy jacquard images. First, the Mumford-Shah model is discretized on piecewise linear finite element spaces to yield greater stability. Then, an iterative relaxation algorithm for numerically solving the discrete version of the model is presented. In this algorithm, an adaptive triangular mesh is refined to generate Delaunay type triangular mesh defined on structured triangulations, and then a quasi-Newton numerical method is applied to find the absolute minimum of the discrete model. Experimental results on noisy jacquard images demonstrated the efficacy of the proposed algorithm.