目前,可见光船舶图像的实例分割仍然是较有挑战性的工作。由于船舶图像场景复杂多变,多数实例分割算法无法对复杂场景下的船舶图像进行有效分割。本文提出了基于注意力机制的依靠位置分割目标(attention based segmenting objects by lo...目前,可见光船舶图像的实例分割仍然是较有挑战性的工作。由于船舶图像场景复杂多变,多数实例分割算法无法对复杂场景下的船舶图像进行有效分割。本文提出了基于注意力机制的依靠位置分割目标(attention based segmenting objects by locations,SOLOA)船舶实例分割算法,针对网络特征图里实例信息不完善、背景干扰较多的问题,使用空间注意力机制来充分利用分类特征中的实例信息,建模图像实例间的相互关系并与分割特征相融合。实验结果表明,在新构建的船舶图像数据集上进行训练和测试,改进的网络模型能有效地增强网络特征中的实例信息、减弱背景的干扰。SOLOA算法的船舶实例分割准确率高于其他算法,可以很好地适应复杂场景下的船舶分割需求。展开更多
文摘目前,可见光船舶图像的实例分割仍然是较有挑战性的工作。由于船舶图像场景复杂多变,多数实例分割算法无法对复杂场景下的船舶图像进行有效分割。本文提出了基于注意力机制的依靠位置分割目标(attention based segmenting objects by locations,SOLOA)船舶实例分割算法,针对网络特征图里实例信息不完善、背景干扰较多的问题,使用空间注意力机制来充分利用分类特征中的实例信息,建模图像实例间的相互关系并与分割特征相融合。实验结果表明,在新构建的船舶图像数据集上进行训练和测试,改进的网络模型能有效地增强网络特征中的实例信息、减弱背景的干扰。SOLOA算法的船舶实例分割准确率高于其他算法,可以很好地适应复杂场景下的船舶分割需求。