期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
子宫肌壁间小叶样分割性平滑肌瘤5例临床病理分析 被引量:4
1
作者 詹阳 潘静 +6 位作者 谷玉春 阴赪宏 支文雪 宋菡姝 徐汉武 徐飞 朱力 《诊断病理学杂志》 2017年第1期3-6,10,共5页
目的探讨子宫肌壁间小叶样分割性平滑肌瘤(CDL)的临床病理学特征、诊断与鉴别诊断及预后。方法对5例子宫肌壁间小叶样分割性平滑肌瘤病例的临床表现、病理学、免疫组化特征进行回顾性分析并复习相关文献。结果 5例患者均因阴道异常出血... 目的探讨子宫肌壁间小叶样分割性平滑肌瘤(CDL)的临床病理学特征、诊断与鉴别诊断及预后。方法对5例子宫肌壁间小叶样分割性平滑肌瘤病例的临床表现、病理学、免疫组化特征进行回顾性分析并复习相关文献。结果 5例患者均因阴道异常出血和/或盆腔包块就诊,年龄平均44.8岁。大体表现为肌壁间结节状肿物分界不清,质地较软。镜下肿瘤性平滑肌细胞束形成大小不等的微结节状,边缘可以呈"舌状"或"指状"突起伸入正常平滑肌组织中,表现为"分割样"形态。免疫组化:SMA、actin和PR均(+),ER(+)/弱(+),CD10、HMB45、CD34和CD117均(-),Ki-67阳性指数低。随访17~61个月,均未发现肿瘤复发和转移。结论子宫肌壁间小叶样分割性平滑肌瘤是一种罕见的子宫肿瘤,好发于生育晚期及围绝经期女性,预后良好。分隔样生长方式是重要的病理特点,免疫组化有助于鉴别诊断,手术是有效的治疗手段。 展开更多
关键词 小叶分割性平滑肌瘤 子宫肌壁间 分割样 病理学 免疫组化
下载PDF
基于色彩聚类的皮影服饰纹样分割 被引量:10
2
作者 刘静 庄梅玲 +1 位作者 商蕾 张晓枫 《现代纺织技术》 北大核心 2021年第5期71-77,共7页
为实现皮影服饰图案的自动提取,以唐山皮影头茬图像为例,分析了皮影服饰的色彩构成及图案特点,探讨了一种基于色彩聚类的皮影图案识别方法。通过相对总变差模型对皮影图像进行了噪声平滑处理;将处理后的数字图像由RGB颜色空间转换至CIE ... 为实现皮影服饰图案的自动提取,以唐山皮影头茬图像为例,分析了皮影服饰的色彩构成及图案特点,探讨了一种基于色彩聚类的皮影图案识别方法。通过相对总变差模型对皮影图像进行了噪声平滑处理;将处理后的数字图像由RGB颜色空间转换至CIE L*a*b*颜色空间,提取空间中的a、b两个色彩分量;利用K-means聚类算法对皮影图像色彩进行聚类分析,最终实现皮影色彩纹样的最佳分割。结果表明,笔者设计的算法可有效实现对于皮影这类色相分明、细节丰富且主色统一的彩色图像的分割。 展开更多
关键词 皮影 分割 色彩聚类 图像平滑 颜色空间
下载PDF
分隔性(叶状)平滑肌瘤2例报道并文献复习 被引量:3
3
作者 孙亦雯 刘从容 《现代妇产科进展》 CSCD 北大核心 2016年第5期399-400,共2页
分隔性(叶状)平滑肌瘤[Dissecting(cotyledonoid)leiomyoma,CDL]由Roth等~[1-2]在1996年首次提出,并将其称之为Sternberg瘤~[2]。早在1975年,David等~[3]将CDL描述为葡萄样子宫平滑肌瘤;1979年,Sternberg~[4]将其描述为增生性盆腔血管... 分隔性(叶状)平滑肌瘤[Dissecting(cotyledonoid)leiomyoma,CDL]由Roth等~[1-2]在1996年首次提出,并将其称之为Sternberg瘤~[2]。早在1975年,David等~[3]将CDL描述为葡萄样子宫平滑肌瘤;1979年,Sternberg~[4]将其描述为增生性盆腔血管肌瘤病。CDL是一类有良性组织学特征、良性生物学行为且缺乏特征性临床表现的良性平滑肌源性肿瘤。由于临床认识不足, 展开更多
关键词 子宫肿瘤 胎盘分割性平滑肌瘤 诊断
下载PDF
A level set based segmentation approach for point-sampled surfaces 被引量:4
4
作者 MIAO Yong-wei FENG Jie-qing +1 位作者 ZHENG Guo-xian PENG Qun-sheng 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期575-585,共11页
Segmenting a complex 3D surface model into some visually meaningful sub-parts is one of the fundamental problems in digital geometry processing. In this paper, a novel segmentation approach of point-sampled surfaces i... Segmenting a complex 3D surface model into some visually meaningful sub-parts is one of the fundamental problems in digital geometry processing. In this paper, a novel segmentation approach of point-sampled surfaces is proposed, which is based on the level set evolution scheme. To segment the model so as to align the patch boundaries with high curvature zones, the driven speed function for the zero level set inside narrow band is defined by the extended curvature field, which approaches zero speed as the propagating front approaches high curvature zone. The effectiveness of the proposed approach is demonstrated by our ex- perimental results. Furthermore, two applications of model segmentation are illustrated, such as piecewise parameterization and local editing for point-sampled geometry. 展开更多
关键词 Point-samoled surfaces SEGMENTATION Level set method Extended curvature field
下载PDF
Comparison of Different Extraction Approaches for Heavy Metal Partitioning in Sediment Samples 被引量:1
5
作者 M. B. ARAIN T. G. KAZI +4 位作者 M. K. JAMALI J. A. BAIG H. I. AFRIDI N. JALBANI R. A. SARFRAZ1 《Pedosphere》 SCIE CAS CSCD 2009年第4期476-485,共10页
Three extraction methods, ultrasonic assisted extraction (USE), microwave assisted extraction (MSE), and conventional single extraction (CSE), in conjunction with the modified three-stage BCR sequential extraction pro... Three extraction methods, ultrasonic assisted extraction (USE), microwave assisted extraction (MSE), and conventional single extraction (CSE), in conjunction with the modified three-stage BCR sequential extraction procedure (SEP) were applied to examine the contents of Cd, Cu, Cr, Ni, Pb and Zn from lake sediment samples, to know whether these techniques can reduce extraction time and improve reproducibility. The SEP and developed alternative single extrac- tion methods were validated by the analysis of certified reference material BCR 601. By the use of optimized sonication and microwave conditions, steps 1, 2 and 3 of the BCR sequential extraction methods (excluding the hydrogen peroxide digestion in step 3, which was not performed with sonication and microwave) could be completed in 15-30 min and 60- 150 s, respectively. The recoveries of total extractable metal contents in BCR 601, obtained by three single extractions ranged from 93.3%-102%, 88.9%-104% and 81.2%-96.2% for CSE, USE and MSE, respectively. The precision of the single extraction methods was found in the range of 3.7%-9.4% for all metals (n = 6). 展开更多
关键词 heavy metals lake sediment microwave single extraction modified BCR sequential extraction ultrasonic single extraction
下载PDF
Interactive image segmentation with a regression based ensemble learning paradigm 被引量:2
6
作者 Jin ZHANG Zhao-hui TANG +2 位作者 Wei-hua GUI Qing CHEN Jin-ping LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期1002-1020,共19页
To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. Howeve... To achieve fine segmentation of complex natural images, people often resort to an interactive segmentation paradigm, since fully automatic methods often fail to obtain a result consistent with the ground truth. However, when the foreground and background share some similar areas in color, the fine segmentation result of conventional interactive methods usually relies on the increase o f manual labels. This paper presents a novel interactive image segmentation method via a regression-based ensemble model with semi-supervised learning. The task is formulated as a non-linear problem integrating two complementary spline regressors and strengthening the robustness of each regressor via semi-supervised learning. First, two spline regressors with a complementary nature are constructed based on multivariate adaptive regression splines (MARS) and smooth thin plate spline regression (TPSR). Then, a regressor boosting method based on a clustering hypothesis and semi-supervised learning is proposed to assist the training of MARS and TPSR by using the region segmentation information contained in unlabeled pixels. Next, a support vector regression (SVR) based decision fusion model is adopted to integrate the results of MARS and TPSR. Finally, the GraphCut is introduced and combined with the SVR ensemble results to achieve image segmentation. Extensive experimental results on benchmark datasets of BSDS500 and Pascal VOC have demonstrated the effectiveness of our method, and the com- parison with experiment results has validated that the proposed method is comparable with the state-of-the-art methods for in- teractive natural image segmentation. 展开更多
关键词 Interactive image segmentation Multivariate adaptive regression splines (MARS) Ensemble learning Thin-platespline regression (TPSR) Semi-supervised learning Support vector regression (SVR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部